DNA technologies to combat seed pathogens

Marcel Toonen
Combat seed pathogens

• Food safety
 • staple crops

• Environment
 • escape of pathogens into native crops/flora

• Economic
 • financial losses of seed companies and farmers/growers
Combat seed pathogens

- Seed borne
 - Not necessarily transmission to plant

- Seed transmitted
 - Type of pathogen
 - Environmental conditions
Advantages of DNA technologies

• Universal technology
• PCR
 • sensitive detection
 • specific identification
• Next Generation Sequencing
 • increasing amount of information
 • cost effective
Applications

• Disease testing
 • detection and identification of (seed) pathogens
 • diagnostics

• Identification
 • plant varieties
 • bacteria / fungi
Applications

- Disease testing
 - detection and identification of (seed) pathogens
 - diagnostics

- Identification
 - plant varieties
 - bacteria / fungi
Applications

Diagnostics
the process of attempting to identify a possible disease or disorder (symptomatic material)

Routine testing
a test or group of tests performed to screen for the absence (or presence) of specific pathogens (that may be present latently)
PCR to detect seed pathogens

• PRO
 • universal
 • DNA & RNA
 • detection and identification
 • relatively fast implementation
 • constant quality of primers and probes production
 • test results quickly available

• PRO & CONTRA
 • sensitive technology
 • specific

• CONTRA
 • seed-remains inhibit PCR
 • still little (validated) sequence information
PCR to detect seed pathogens

Identification
- Extract seed
- Plating
- Visual identification of suspect bacteria
- Confirmation by PCR

Detection
- Extract seed
- Isolate DNA
- PCR
PCR for seed pathogens

• Identification/confirmation
 • 7-019a: Detection of *Xanthomonas campestris* pv. *campestris* on *Brassica* spp.
 • 7-020: Detection of *Xanthomonas hortorum* pv. *carotae* on *Daucus carota* (carrot)
 • 7-030: Detection of *Acidovorax valerianellae* on *Valerianella locusta* (corn salad)

• Detection
 • detection of pospiviroids in tomato/pepper seed (ISHI/Naktuinbouw)
 • direct PCR for detecting *Acidovorax citrulli* (TESTA)
 • direct PCR for detection of *Xanthomonas campestris* pv. *campestris* & *Pseudomonas syringae* pv. *maculicola* (TESTA)
PCR identification/confirmation

• To confirm identity of pathogen
 • direct on isolate
 • specific primer sets required (specificity)
 • preferably use more primer sets
 • sensitivity less relevant
PCR detection

- Detect pathogen directly in seed extract
 - low level of pathogens (sensitivity)
 - seed matrix inhibits PCR (sensitivity)
 - specific primers required (specificity)
 - use of spike

- Spike
 - add a comparable pathogen to the extract to determine recovery
 - control on extraction
 - control on PCR
PCR detection

• Detect pathogen directly in seed extract
 • low level of pathogens (sensitivity)
 • seed matrix inhibits PCR (sensitivity)
 • specific primers required (specificity)
 • use of spike

• No isolate in hand
 • alternative conformation desirable
PCR detection: A. *citrulli*

- is causal organism of bacterial fruit blotch (BFB)
- Several hosts amongst the cucurbits
- Seed transmittable

Detection methods
 - Grow-out (greenhouse or sweat box)
 - Direct seed wash PCR
PCR detection: *A. citrulli*

- Extract of 5000 seeds
- Add low number of *A. cattleyae* as spike
- Purify DNA with DNA extraction kit
- Perform multiplex Taqman PCR
PCR detection: *A. citrulli*

- Sensitivity
 - < 10 cells *A. citrulli* /mL seed extract

- Good specificity

- Repeatability and reproducibility
 - 100%

Video available: www.seedtesta.eu
Applications

- Disease testing
 - detection and identification of (seed) pathogens
 - diagnostics

- Identification
 - plant varieties
 - bacteria / fungi
Identification of (known) pathogens

<table>
<thead>
<tr>
<th>Identification Level</th>
<th>Sequencing & Barcoding</th>
<th>PCR</th>
<th>Molecular Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>genus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subspecies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Molecular markers

• Various technologies to identify randomly genetic differences
 • AFLP / SSR /SNP

• Distinguish on strain/subspecies level

• Additional information
 • microbiology
 • pathogenicity
 • ‘look alikes’
Clavibacter in tomato seeds
PCR to distinguish *Fusarium* species

- *Fusarium* species infecting wheat seeds
- Identification done by microbiology
- Some species are difficult to distinguish from some others
 => PCR used to differentiate some species
PCR to distinguish *Fusarium* species

<table>
<thead>
<tr>
<th></th>
<th>culmorum</th>
<th>graminearum</th>
<th>avenaceum</th>
<th>sambucinum</th>
<th>crookwellense</th>
<th>semitectum</th>
<th>acuminatum</th>
<th>tricinctum</th>
<th>poae</th>
<th>sporotrichioides</th>
<th>langsethiae</th>
<th>equiseti</th>
</tr>
</thead>
<tbody>
<tr>
<td>culmorum</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>graminearum</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>avenaceum</td>
<td></td>
</tr>
<tr>
<td>sambucinum</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>crookwellense</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>semitectum</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acuminatum</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tricinctum</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sporotrichioides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>langsethiae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equiseti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Possible confusion based on:

- X Spores and color
- X Color (without sporulation)
- X Sporulation

- Distinction by PCR
- No tools available
- Some false identifications using molecular tools
Barcoding

- Sequence of one or more specific gene(s) are used as ‘barcode’ to univocally identify an organism as belonging to a particular species
Barcoding of 12 combined genes
Next Generation Sequencing (NGS)

- Cost of sequence data decreases
 - capacity increases
- Increasing amount of genetic sequence data
- How are sequences validated?
 - biological background
 - Pathogenicity
- Q-bank
 - curated information on plant pathogens (incl. sequences)
 - www.q-bank.eu
NGS: Applications

• Identify genes involved in pathogenicity
 • compare pathogenic vs. non-pathogenic organisms
 • identify pathogenicity related genes
 • target for PCR development

• Identify diseases in plants (diagnostics)
 • Sequence plant genome or transcriptome
 • DNA/RNA/sRNA
 • identify genes for pathogens
NGS: diagnostics

- citrus vein enation disease
 - graft-transmissible disease of sour orange (*Citrus aurantium* L.)
 - virus like structures visible
 - reactive with *Barley yellow dwarf virus* antiserum
 - no virus isolated

Vives et al (2013) Phytopathology 102, 1077
NGS diagnostics

• Deep sRNA sequencing
 -> identification of 19 virus-derived small RNAs

• PCR
 -> to construct full genome sequence of 5,983 nt

• Identification of new virus: *Citrus vein enation virus* (CVEV)

Vives et al (2013) Phytopathology 102, 1077
Developments

• Novel DNA/RNA methods
 • high throughput
 • multiplex (e.g. Luminex)
 • on site detection (e.g. LAMP)

• Next Generation Sequencing
 • the new standard

• Alive or dead
Conclusion

• DNA based technologies for reliable detection of (seed) pathogens

• Next Generation Sequencing will offer new opportunities
Acknowledgements

• Valerie Grimault
• Ilaria Alberti
• Harrie Koenraadt
• Mark Buimer
• Maaike Bruinsma