## Inter laboratory comparison (ILC) report*

ISTA PT.22-SH 7-022

ISTA Proficiency test: Detection of Microdochium nivale and M. majus on Triticum spp.

Original report signed and archived

ISTA does not bear/accept/take any responsibility for the use of data contained in this document.
The recipients of this document are solely responsible for its usage.

| CoORDINATION | Full NAME | Position |
| :---: | :---: | :---: |
| ORGANISATION AND PREPARATION OF <br> SAMPLES | MARIAN MCEWAN | SEED PATHOLOGIST, SASA |
| ChARACTERISATION OF SAMPLES | TINA LANGAN | SENIOR SEED ANALYST: SEED HEALTH, SASA |
| ORGANISER OF ILC | MARIA MCEWAN | SEED PATHOLOGIST, SASA |
| COORDINATION OF ILC, VALIDATION OF <br> REPORTS'S DIFUSSION |  |  |

## Table of Contents

1 PROFICIENCY TEST ORGANISATION ..... 3
1.1 Notation of results ..... 3
1.2 Composition of the sample panel ..... 3
1.3 Pretest ..... 3
1.4 Homogeneity Test ..... 4
1.5 Stability Test ..... 6
2 PROFICIENCY TEST RESULTS ..... 9
2.1 Statistical analysis of data .....  9
2.2 Analysis of data ..... 10
2.2.1 Quantitative results ..... 10
2.2.1.1 Results of statistical tools used: healthy level; medium level; high level ..... 11
2.2.1.2 Rating system and computations of laboratories ..... 14
3 METHOD DECLARED BY PARTICIPANTS ..... 15
4 CONCLUSION ..... 15
5 REFERENCES ..... 16
Appendix A ..... 17

The aim of this Proficiency Test was to verify the ability of laboratories to detect and identify the pathogen Microdochium nivale and M. majus in Triticum aestivum (Wheat) seeds.

Schedule

| Dispatch of Samples | June 2022 |
| :--- | :--- |
| Deadline for submission of results | 30 September 2022 |
| Sending of report and individual letters | January 2023 |

Nine laboratories participated to this test and were randomly allocated a number, so that results remained anonymous.

Of the nine participants registered for the proficiency test:

- 5 were accredited for 7-022 method.
- 4 were not accredited for 7-022 method.


### 1.1 Notation of results

The laboratories indicated a quantitative result on four individual replicates of colonies of target pathogen observed giving a mean quantitative result for each sample as a \% of Microdochium nivale and/or M. majus observed.

### 1.2 Composition of the sample panel

Three samples of 400 seeds were sent to the participants at the following infection levels (mean result of homogeneity tests), shown in Table 1.

Table 1: Infection level of samples

| Lot | Level of contamination | Expected Result |
| :---: | :---: | :---: |
| 1 | High | $34 \%$ |
| 2 | Healthy | Nil or $0.25 \%$ |
| 3 | Medium | $12 \%$ |

### 1.3 Pretest

The ideal infection levels would be Nil for the healthy, $10 \%$ for the medium and $30 \%$ for the high level. Three seed lots were identified. The healthy seed lot was obtained from GEVES, and the medium and high infections were from the Scottish 2021 harvest and were tested in 400 seed samples by ISTA method 7-022. The results of pre-tests are indicated in Table 2. Samples were also checked for the presence of other pathogens to ensure that the target pathogen would not be overwhelmed. Levels of Parastagonospora nodorum and Fusarium species were very low on all three seed lots. Thousand seed weights were obtained according to current ISTA rules Chapter 10, to ensure sufficient seed was obtained for the proficiency test requirements.

Table 2: Sample infection results from pre-test

| Lot | OSTS <br> reference | \% Microdochium <br> infection | \% Parastagonospora <br> nodorum | \% Fusarium <br> species | Thousand seed <br> weight $(\mathrm{g})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 77645 | 12 | Nil | 2 | 53.9 |
| 2 | 78871 | Nil | Nil | 1 | 53.5 |
| 1 | 77644 | 34 | Nil | 1 | 47.3 |

### 1.4 Homogeneity Test

The statistical analysis for homogeneity was carried out using Hampels Outliers test tool, to look for outlier results from the normal distribution of results of Microdochium nivale and M. majus. This Homogeneity test was carried out after packaging and just before sample dispatch. Ten extra samples of 400 seeds representing each contamination level were tested. The samples were tested on the $26^{\text {th }} \& 27^{\text {th }}$ of April 2022. The raw data are given in Appendix A, part 1.


Figure 1: Mean \% Microdochium infection levels in homogeneity test sub-samples


Figure 2: Box and whisker plot for the homogeneity sub-sample mean results for Lots 1, 2 \& 3
1.4.1 Healthy seed lot

Two outliers were detected in sub-samples 1 and 2, but only one isolate of Microdochium was the cause of this. One colony could easily occur by chance, so although Hampels Outlier Tool identified this as an outlier, one colony detected is acceptable.

| MS Excel Hampels Outlier Test Lot 2 |  |  | Healthy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\|\mathrm{Xi}-\mathrm{M}\|$ | Status |  |  |
| 1 | 0.25 | 0.250 | Outlier | Median (M): | 0.000 |
| 2 | 0.25 | 0.250 | Outlier | MAD: | 0.000 |
| 3 | 0.00 | 0.000 | OK | 5.2 X MAD | 0.000 |
| 4 | 0.00 | 0.000 | OK |  |  |
| 5 | 0.00 | 0.000 | OK |  |  |
| 6 | 0.00 | 0.000 | OK |  |  |
| 7 | 0.00 | 0.000 | OK |  |  |
| 8 | 0.00 | 0.000 | OK |  |  |
| 9 | 0.00 | 0.000 | OK |  |  |
| 10 | 0.00 | 0.000 | OK |  |  |

1.4.2 Medium infection seed lot

For the medium infection level, sub-sample 9 appeared to give a high result but this was not picked out as an outlier using Hamples outlier tool.

| MS Excel Hampels Outlier Test Lot 3 |  |  | Medium |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | \| Xi-M| | Status |  |  |
| 1 | 9.00 | 0.125 | OK | Median (M): | 9.125 |
| 2 | 9.25 | 0.125 | OK | MAD: | 0.750 |
| 3 | 11.00 | 1.875 | OK | 5.2 X MAD | 3.900 |
| 4 | 9.25 | 0.125 | OK |  |  |
| 5 | 9.50 | 0.375 | OK |  |  |
| 6 | 8.25 | 0.875 | OK |  |  |
| 7 | 8.25 | 0.875 | OK |  |  |
| 8 | 8.25 | 0.875 | OK |  |  |
| 9 | 12.50 | 3.375 | OK |  |  |
| 10 | 8.50 | 0.625 | OK |  |  |

### 1.4.3 High infection seed lot

For the high infection lot, sub-sample 8 gave the lowest result but again it was not picked out as an outlier using Hamples outlier tool.

| MS Excel Hampels Outlier Test Lot 1 |  |  | High |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\|X i-M\|$ | Status |  |  |
| 1 | 32.50 | 0.125 | OK | Median (M): | 32.625 |
| 2 | 36.25 | 3.625 | OK | MAD: | 1.625 |
| 3 | 34.25 | 1.625 | OK | 5.2 X MAD | 8.450 |
| 4 | 32.00 | 0.625 | OK |  |  |
| 5 | 34.25 | 1.625 | OK |  |  |
| 6 | 33.50 | 0.875 | OK |  |  |
| 7 | 32.75 | 0.125 | OK |  |  |
| 8 | 27.75 | 4.875 | OK |  |  |
| 9 | 29.50 | 3.125 | OK |  |  |
| 10 | 29.50 | 3.125 | OK |  |  |

### 1.5 Stability Test

The statistical analysis for the stability of pathogen infection was carried out using Hampels Outlier test tool, to look for outlier results from the normal distribution of results of Microdochium nivale and M. majus. This stability test was carried out after all participating labs had submitted their results. Three extra samples of 400 seeds representing each contamination level were tested. The samples were tested in September 2022. The raw data is given in Appendix A, part 3.


Figure 3: Mean \% Microdochium infection levels in stability test sub-samples


Figure 4: Box and whisker plot for the stability sub-sample mean results for Lots 1,2 \& 3
1.5.1 Healthy seed lot

| MS Excel Hampels Outlier Test Lot 2 |  |  | Healthy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\|\mathrm{Xi}-\mathrm{M}\|$ | Status |  |  |
| 1 | 0.00 | 0.000 | OK | Median (M): | 0.000 |
| 2 | 0.25 | 0.250 | Outlier | MAD: | 0.000 |
| 3 | 0.00 | 0.000 | OK | 5.2 X MAD | 0.000 |

The healthy seed lot stability data was added to the homogeneity data to ensure that the new stability test results had not deviated more over time. In the table below $S$ indicates the stability test and $H$ the homogeneity test.

| MS Excel Hampels Outlier Test Lot 2 |  |  | Healthy |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | \| Xi-M| | Status |  |  |  |
| 1 | 0.00 | 0.000 | OK | S | Median (M): | 0.000 |
| 2 | 0.25 | 0.250 | Outlier | S | MAD: | 0.000 |
| 3 | 0.00 | 0.000 | OK | S | 5.2 X MAD | 0.000 |
| 4 | 0.25 | 0.250 | Outlier | H |  |  |
| 5 | 0.25 | 0.250 | Outlier | H |  |  |
| 6 | 0.00 | 0.000 | OK | H |  |  |
| 7 | 0.00 | 0.000 | OK | H |  |  |
| 8 | 0.00 | 0.000 | OK | H |  |  |
| 9 | 0.00 | 0.000 | OK | H |  |  |
| 10 | 0.00 | 0.000 | OK | H |  |  |
| 11 | 0.00 | 0.000 | OK | H |  |  |
| 12 | 0.00 | 0.000 | OK | H |  |  |
| 13 | 0.00 | 0.000 | OK | H |  |  |

As before the presence of one isolate of Microdochium species (although recognized as an outlier by Hampels Tool) is acceptable for the purposes of this test.
1.5.2 Medium infection seed lot

| MS Excel Hampels Outlier Test Lot 3 |  |  | Medium |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\|\mathrm{Xi}-\mathrm{M}\|$ | Status |  |  |
| 1 | 6.50 | 0.500 | OK | Median (M): | 7.000 |
| 2 | 7.25 | 0.250 | OK | MAD: | 0.250 |
| 3 | 7.00 | 0.000 | OK | 5.2 X MAD | 1.300 |

The medium infection seed lot stability data was added to the homogeneity data to ensure that the new stability test results had not deviated and become outliers over time. In the table below S indicates the stability test and H the homogeneity test.

| MS Excel Hampels Outlier Test Lot 3 |  |  | Medium |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\mid \mathrm{Xi}$ - M \| | Status |  |  |  |
| 1 | 6.50 | 2.000 | OK | S | Median (M): | 8.500 |
| 2 | 7.25 | 1.250 | OK | S | MAD: | 0.750 |
| 3 | 7.00 | 1.500 | OK | S | 5.2 X MAD | 3.900 |
| 4 | 9.00 | 0.500 | OK | H |  |  |
| 5 | 9.25 | 0.750 | OK | H |  |  |
| 6 | 11.00 | 2.500 | OK | H |  |  |
| 7 | 9.25 | 0.750 | OK | H |  |  |
| 8 | 9.50 | 1.000 | OK | H |  |  |
| 9 | 8.25 | 0.250 | OK | H |  |  |
| 10 | 8.25 | 0.250 | OK | H |  |  |
| 11 | 8.25 | 0.250 | OK | H |  |  |
| 12 | 12.50 | 4.000 | Outlier | H |  |  |
| 13 | 8.50 | 0.000 | OK | H |  |  |

Sub-sample 12 (previously homogeneity sub-sample 9) which showed high during the homogeneity test, when combined with the stability test results has now been identified as an outlier.

### 1.5.3 High infection seed lot

| MS Excel Hampels Outlier Test Lot 1 |  |  | High |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\|\mathrm{Xi}-\mathrm{M}\|$ | Status |  |  |
| 1 | 24.75 | 0.750 | OK | Median (M): | 25.500 |
| 2 | 28.50 | 3.000 | OK | MAD: | 0.750 |
| 3 | 25.50 | 0.000 | OK | 5.2 X MAD | 3.900 |

The high infection seed lot stability data was added to the homogeneity data to ensure that the new stability test results had not deviated and become outliers over time. In the table below S indicates the stability test and H the homogeneity test.

| MS Excel Hampels Outlier Test Lot 1 |  |  | High |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lab | Lab Values (Xi) | $\|\mathrm{Xi}-\mathrm{M}\|$ | Status |  |  |  |
| 1 | 24.75 | 7.250 | OK | S | Median (M): | 32.000 |
| 2 | 28.50 | 3.500 | OK | S | MAD: | 2.500 |
| 3 | 25.50 | 6.500 | OK | S | 5.2 X MAD | 13.000 |
| 4 | 32.50 | 0.500 | OK | H |  |  |
| 5 | 36.25 | 4.250 | OK | H |  |  |
| 6 | 34.25 | 2.250 | OK | H |  |  |
| 7 | 32.00 | 0.000 | OK | H |  |  |
| 8 | 34.25 | 2.250 | OK | H |  |  |
| 9 | 33.50 | 1.500 | OK | H |  |  |
| 10 | 32.75 | 0.750 | OK | H |  |  |
| 11 | 27.75 | 4.250 | OK | H |  |  |
| 12 | 29.50 | 2.500 | OK | H |  |  |
| 13 | 29.50 | 2.500 | OK | H |  |  |

For Lot 3, point value 12.5 has become an outlier when the homogeneity results are combined with the stability results. See Figure 5 below.


Figure 5: Mean \% Microdochium of sub-samples for homogeneity and stability tests combined

## 2 PROFICIENCY TEST RESULTS

### 2.1 Statistical analysis of data

Results received from participating labs were examined. Raw data for lab replicates is in Appendix A, part 2.
For each lab, the mean replicate results were compared to the allowed tolerances in ISTA Rules (Table 5b, part 1: 2way test at the $2.5 \%$ significance level) and maximum differences between replicates compared to this: for Lab 1, Lot

1 the maximum difference matched the maximum tolerance of 17 for the mean replicate result. Mean result: $28 \%$, Maximum tolerance allowed: 17.

The median result was calculated for each seed lot using the results from the five accredited labs, and this was used as a standard to compare the individual median results to the tolerance given in Miles (1963) Table G8: 5\% probability for 400 seed tests in different laboratories. Used to compare results against a standard (median from accredited labs).

Raw data and analysis of accredited labs is given in Appendix A, part 4 and for voluntary labs it is given in Appendix A, part 5.

All accredited labs were within the tolerance given by the median result, although one accredited lab (3) was at the limit of this tolerance for lot 3 .

For Lot 1, all voluntary labs were within the tolerance given by the median results for the accredited labs.
For Lot 2, one voluntary lab (7) was outside the tolerance given by the median result for the accredited labs, accounting for the allowed presence of one single colony of Microdochium species in 400 seeds.

For Lot 3, all voluntary labs were within the tolerance given by the median result for the accredited labs.
Table 3: Allowed deviation from the standard (median) for each seed lot

| Lot | Accredited lab Median \% <br> infection | Tolerance: allowed \% deviation from <br> the standard (median) for 400 seeds |
| :---: | :---: | :---: |
| 1 | 28 | 6 |
| 2 | 0 | 0.25 |
| 3 | 8 | 4 |

### 2.2 Analysis of data

### 2.2.1 Quantitative results

Table 4: All Participating Labs Mean replicate results for Lots 1, 2 and 3 (Raw data in Appendix A, part 2).

|  |  | High | Healthy | Medium |
| :---: | :---: | :---: | :---: | ---: |
| Accredited | Lab <br> code | 1 | 2 | 3 |
| Y | 1 | 28.25 | 0.00 | 8.75 |
| Y | 2 | 28.00 | 0.00 | 6.75 |
| Y | 3 | 25.25 | 0.00 | 6.50 |
| Y | 4 | 28.25 | 0.00 | 8.25 |
| N | 5 | 30.75 | 0.25 | 10.00 |
| N | 6 | 28.25 | 0.00 | 6.25 |
| N | 7 | 32.25 | 2.75 | 11.00 |
| Y | 8 | 30.00 | 0.00 | 7.75 |
| N | 9 | 23.75 | 0.00 | 3.75 |

2.2.1.1 Results of statistical tools used: healthy level; medium level; high level

## Hamples Outlier Test

Healthy

| Pathogen | Hamples Outliers Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Microdochium nivale and M. majus | MS Lab | el Hampels Outlier <br> Lab Values (Xi) | est Lot 2 $X i-M \mid$ | Healthy <br> Status | Including out |  |
|  | 1 | 0.00 | 0.000 | $\begin{aligned} & \text { OK } \\ & \text { OK } \end{aligned}$ | Median (M): <br> MAD: <br> 5.2 X MAD | 0.000 |
|  | 2 | 0.00 | 0.000 |  |  | 0.000 |
|  | 3 | 0.00 | 0.000 | OK |  | 0.000 |
|  | 4 | 0.00 | 0.000 | OK |  |  |
|  | 5 | 0.25 | 0.250 | Outlier |  |  |
|  | 6 | 0.00 | 0.000 | OK |  |  |
|  | 7 | 2.75 | 2.750 | Outlier |  |  |
|  | 8 | 0.00 | 0.000 | OK |  |  |
|  | 9 | 0.00 | 0.000 | OK |  |  |
|  | MS Excel Hampels Outlier Test Lot 2 |  |  | Healthy | Excluding outlier |  |
|  | Lab | Lab Values (Xi) | $\|\mathrm{Xi}-\mathrm{M}\|$ | Status |  |  |
|  | 1 | 0.00 | 0.000 | OK | Median <br> (M): <br> MAD: <br> 5.2 X MAD | 0.000 |
|  | 2 | 0.00 | 0.000 | OK |  | 0.000 |
|  | 3 | 0.00 | 0.000 | OK |  | 0.000 |
|  | 4 | 0.00 | 0.000 | OK |  |  |
|  | 5 | 0.25 | 0.250 | Outlier |  |  |
|  | 6 | 0.00 | 0.000 | OK | SD | 0.088388 |
|  | 8 | 0.00 | 0.000 | OK |  |  |
|  | 9 | 0.00 | 0.000 | OK |  |  |

Medium infection

| Pathogen | Hamples Outliers Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Microdochium nivale and $M$. majus | MS Lab | I Hampels Outlie <br> Lab Values (Xi) | Test Lot 3 $\|\mathrm{Xi}-\mathrm{M}\|$ | Medium <br> Status |  |  |
|  | 1 | 8.75 | 1.000 | OK | (M): | 7.750 |
|  | 2 | 6.75 | 1.000 | OK | MAD: | 1.500 |
|  | 3 | 3.50 | 4.250 | OK | 5.2 X MAD | 7.800 |
|  | 4 | 8.25 | 0.500 | OK |  |  |
|  | 5 | 10.00 | 2.250 | OK |  |  |
|  | 6 | 6.25 | 1.500 | OK | SD | 2.418103 |
|  | 7 | 11.00 | 3.250 | OK |  |  |
|  | 8 | 7.75 | 0.000 | OK |  |  |
|  | 9 | 3.75 | 4.000 | OK |  |  |

High infection

| Pathogen | Hamples Outliers Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Microdochium nivale and $M$. majus | MS <br> Lab | Hampels Outlier <br> Lab Values (Xi) | est Lot 1 $\|\mathrm{Xi}-\mathrm{M}\|$ | High <br> Status |  |  |
|  | 1 | 28.25 | 0.000 | OK | Median (M): | 28.250 |
|  | 2 | 28.00 | 0.250 | OK | MAD: | 1.750 |
|  | 3 | 25.25 | 3.000 | OK | 5.2 X MAD | 9.100 |
|  | 4 | 28.25 | 0.000 | OK |  |  |
|  | 5 | 30.75 | 2.500 | OK |  |  |
|  | 6 | 28.25 | 0.000 | OK | SD | 1.809 |
|  | 7 | 32.25 | 4.000 | OK |  |  |
|  | 8 | 30.00 | 1.750 | OK |  |  |
|  | 9 | 23.75 | 4.500 | OK |  |  |



Comparing all participating labs, one clear outlier was observed in Lot 2 (Healthy) and there was some variation observed around the median result.


Comparing only labs with ISTA accreditation for validated SH method 7-022 no labs showed divergent results.

### 2.2.1.2 Rating system and computations of laboratories

Z-scores for each participating lab were calculated by subtracting the lab result from the mean results obtained from all accredited labs and dividing this by the standard deviation of all lab results for each lot.

Participating lab z scores:

| High |  | Medium | Healthy |
| ---: | ---: | ---: | ---: |
| Lab code | Z score | Z score | Z score |
| 1 | 0.122 | 0.724 | 0.000 |
| 2 | 0.020 | -0.103 | 0.000 |
| 3 | -1.096 | -1.447 | 0.000 |
| 4 | 0.122 | 0.517 | 0.000 |
| 5 | 1.137 | 1.241 | 0.291 |
| 6 | 0.122 | -0.310 | 0.000 |
| 7 | 1.746 | 1.654 | 3.205 |
| 8 | 0.832 | 0.310 | 0.000 |
| 9 | -1.705 | -1.344 | 0.000 |

Rating $z$ score values:

| Rating | Z score |
| :---: | :---: |
| A | $\leq 0.67$ |
| B | $>0.67 \leq 1.5$ |
| C | $<2.33$ |
| BMP | $>2.33$ |



## 3 Method declared by participants

All participating labs used ISTA validated SH Method 7-022.
There were differences noted in the type of media used, either Potato Dextrose Agar (PDA) or Malt Agar (MA), and also in the manufacturer of the media used by participating labs. No labs used a type of media that was not recommended in ISTA SH method 7-022.

Four participating labs incubated in darkness with no light, but some labs also used near-ultraviolet light (NUV) for a period to enable the typical salmon pink colour to develop on the Microdochium colonies. The use of near-ultraviolet
light can assist with identification. Only one accredited lab indicated the use of NUV, whereas three out of four voluntary labs indicated that NUV was used.

Table 5: Additional information provided by participating labs

| Lab No | Accredited | Media | Light |
| :---: | :---: | :--- | :--- |
| 1 | Yes | PDA (Merck) | None |
| 2 | Yes | MA (in-house) | None |
| 3 | Yes | Replicate 1 \& 2 on PDA, replicate 3 \& 4 on MA (both Merck) | No comment |
| 4 | Yes | PDA (Oxoid) | None |
| 5 | No | Neogen | None, 3 hours NUV at end of <br> test |
| 6 | No | PDA (Merck) | 7 days in the dark, 24 h NUV |
| 7 | No | PDA (Difco) | None |
| 8 | Yes | PDA (Difco) | Dark + NUV |
| 9 | No | MA (Applichem) | 7 days in the dark, 24 h NUV |

## 4 CONCLUSION

All laboratories with existing accreditation for ISTA validated seed health method 7-022 achieved acceptable Z scores.
Only one of the four voluntary laboratories achieved a BMP marking.
Median results for each seed lot were calculated using the results from the five participating labs that are ISTA accredited for this method. Standard errors are based on the assumption that data is binomial - since there is no evidence to the contrary in this data set. No heterogeneity was observed for any of the three seed lots in the homogeneity pre-test, although one replicate of the homogeneity test for the medium seed lot became an outlier once stability test results were added. There were no differences between the five accredited labs, however non-accredited voluntary participants showed more variation.

The media used may account for some of the variation seen, this is likely to be due to different manufacturers of media using varying amounts of constituents. Lab 3 whilst being accredited for this method saw differences between the Potato Dextrose Agar (PDA) and Malt Agar (MA) used (splitting their results over two different media types), however the combined result of the results still fell within the acceptable tolerances, but the MA results for Lot 3 showed only one colony on the two replicates which was unexpected but not outside the replicate tolerance. The low isolate number may have been due to sample variation, but no results as low as this were observed from any of the homogeneity or stability tests, neither did any other participating lab record results as low as this. There is the possibility that the Malt Agar used was responsible for the low Microdochium colony numbers observed.

For a test for the purposes of an Orange International Certificate only one type of media should be used for the whole test.

Lab 7 incorrectly identified colonies on Lot 2 (healthy) as Microdochium species, giving an unexpectedly high result and therefore the false positive results merited the BMP rating.

The use of near-ultraviolet light is helpful for laboratories that are less familiar with the identification of Microdochium spp.

## 5. REFERENCES

Miles, S.R. (1963), "Handbook of Tolerances and Measures of Precision for Seed Testing", Proceedings of the International Seed Testing Association, Vol. 28, No. 3, 525-686

Current International Seed Testing Association Rules, Chapter 5, Table 5b.
International Seed Testing Association document PT-P-03: "Organizing and Analyzing Results of the Seed Health Proficiency Tests", version 3.0

International Seed Testing Association document PT-P-01: "ISTA Standard Proficiency Test", version 5.0

## Appendix A:

1) Raw data for homogeneity test

2) Raw data for the lab test results

| Microdochium PT22 SH Results |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lot 1 | High |  |  |  | Lot 2 | Healthy |  |  |  | Lot 3 | Medium |  |  |  |
| Lab No | Accreditec | 1 | 2 | 3 | 4 | Mean | 1 | 2 | 3 | 4 | Mean | 1 | 2 | 3 | 4 | Mean |
| 1 | Yes | 22 | 38 | 21 | 32 | 28.25 | 0 | 0 | 0 | 0 | 0.00 | 9 | 7 | 7 | 12 | 8.75 |
| 2 | Yes | 26 | 23 | 28 | 35 | 28 | 0 | 0 | 0 | 0 | 0.00 | 6 | 5 | 10 | 6 | 6.75 |
| 3 | Yes | 20 | 21 | 30 | 30 | 25.25 | 0 | 0 | 0 | 0 | 0.00 | 6 | 7 | 0 | 1 | 6.50 |
| 4 | Yes | 28 | 25 | 28 | 32 | 28.25 | 0 | 0 | 0 | 0 | 0.00 | 9 | 9 | 10 | 5 | 8.25 |
| 5 | No | 31 | 32 | 29 | 31 | 30.75 | 1 | 0 | 0 | 0 | 0.25 | 16 | 7 | 8 | 9 | 10.00 |
| 6 | No | 28 | 26 | 35 | 24 | 28.25 | 0 | 0 | 0 | 0 | 0.00 | 4 | 7 | 6 | 8 | 6.25 |
| 7 | No | 36 | 25 | 37 | 31 | 32.25 | 3 | 3 | 2 | 3 | 2.75 | 9 | 7 | 14 | 14 | 11.00 |
| 8 | Yes | 34 | 24 | 32 | 30 | 30.00 | 0 | 0 | 0 | 0 | 0.00 | 11 | 6 | 7 | 7 | 7.75 |
| 9 | No | 25 | 25 | 24 | 21 | 23.75 | 0 | 0 | 0 | 0 | 0.00 | 5 | 3 | 3 | 4 | 3.75 |

3) Raw data for the stability test

| Microdochium PT22 SH Stability Results |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lot 1 | Date: 22/9/22 |  |  |  | Lot 2 | DATE: 22/9/2022 |  |  | 4 Mean | Lot 3 | Date: 23/9/22 |  |  | 4 Mean |  |
| Lab | No | 1 | 2 | 3 |  | Mean | 1 | 2 | 3 |  |  | 1 | 2 | 3 |  |  | Media |
| SASA | 1 | 25 | 27 | 22 | 25 | 24.75 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 8 | 9 | 6.5 | PDA (Oxoid) |
| SASA | 2 | 26 | 31 | 28 | 29 | 28.5 | 0 | 0 | 0 | 1 | 0.25 | 8 | 9 | 5 | 7 | 7.25 | PDA (Oxoid) |
| SASA | 3 | 27 | 23 | 26 | 26 | 25.5 | 0 | 0 | 0 | 0 | 0 | 6 | 8 | 10 | 4 | 7 | PDA (Oxoid) |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Average | 26.25 |  |  |  | Average | 0.08 |  |  |  | Average | 6.92 |  |
|  |  |  |  |  | Std dev | 1.984 |  |  |  | Std dev | 0.144 |  |  |  | Std dev | 0.382 |  |
|  |  |  |  |  | Max | 28.50 |  |  |  | Max | 0.25 |  |  |  | Max | 7.25 |  |
|  |  |  |  |  | Min | 24.75 |  |  |  | Min | 0.00 |  |  |  | Min | 6.50 |  |

4) Raw data for the accredited lab test analysis, comparison of replicate tolerances and comparison with accredited lab median result as a standard

|  |  | Lot 1 | High infect |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lab No | Accredited | 1 | 2 | 3 | 4 | 4 Mean | Replicate tolerance: Table 5B, Part <br> 1,4 replicates of 100 seeds. | Actual replicate difference | Tolerance against standard median of $28.25,5 \%$ probability for 400 seed tests in different laboratories, Miles (1963) Table G8 | Actual difference from median |  |
| 1 | Yes | 22 | 38 | 21 | 32 | 28.25 | 17 | 17 | 7 | 0 |  |
| 2 | Yes | 26 | 23 | 28 | 35 | 28.00 | 17 | 12 | 7 | 0 |  |
| 3 | Yes | 20 | 21 | 30 | 30 | 25.25 | 17 | 10 | 7 | 3 |  |
| 4 | Yes | 28 | 25 | 28 | 32 | 28.25 | 17 | 7 | 7 | 0 |  |
| 8 | Yes | 34 | 24 | 32 | 30 | 30.00 | 18 | 10 | 7 | 2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mean | 27.95 |  |  |  |  |  |
|  |  |  |  |  | Median | 28.25 |  |  |  |  |  |
| Replicates | s for all accre | edited labo | oratories we | toler | rance. |  |  |  |  |  |  |
| All accredi | lited labs we | ere in in tole | erance com | to th | the median | n standard. |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Lot 2 | Healthy |  |  |  |  |  |  |  |  |
| Lab No | Accredited | 1 | 2 | 3 | 4 | 4 Mean | Replicate tolerance: 4 replicates of 100 seeds, homogeneity results 1 acceptable | Actual replicate difference | Tolerance against standard median of Nil, for 400 seed tests in different laboratories, | Actual difference from Nil |  |
| 1 | Yes | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |  |
| 2 | Yes | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |  |
| 3 | Yes | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |  |
| 4 | Yes | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |  |
| 8 | Yes | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mean | 0 |  |  |  |  |  |
|  |  |  |  |  | Median | 0 |  |  |  |  |  |
| All accredi | lited labs rep | plicates wer | re Nil |  |  |  |  |  |  |  |  |
| All accredi | lited labs we | ere in tolera | ance with the | wed | d variation | of 1. |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Lot 3 | Medium in |  |  |  |  |  |  |  |  |
| Lab No | Accredited | 1 | 2 | 3 | 4 | 4 Mean | Replicate tolerance: Table 5B, Part 1,4 replicates of 100 seeds. | Actual replicate difference | Tolerance against standard median of $8,5 \%$ probability for 400 seed tests in different laboratories, Miles (1963) Table G8 | Actual difference from median |  |
| 1 | Yes | 9 | 7 | 7 | 12 | 8.75 | 11 | 5 | 4 | 1 |  |
| 2 | Yes | 6 | 5 | 10 | 6 | 6.75 | 10 | 5 | 4 | 1 |  |
| 3 | Yes | 6 | 7 | 0 | 1 | 3.50 | 7 | 7 | 4 | 4 |  |
| 4 | Yes | 9 | 9 | 10 | 5 | 8.25 | 10 | 5 | 4 | 0.5 |  |
| 8 | Yes | 11 | 6 | 7 | 7 | 7.75 | 10 | 5 | 4 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mean | 7.00 |  |  |  |  |  |
|  |  |  |  |  | Median | 7.75 |  |  |  |  |  |
| All accredited lab replicates were within tolerance. |  |  |  |  |  |  |  |  |  |  |  |
| All accredited labs were within tolerance of the median result as a standard. Lab 3 showed the greatest deviation from the mean for lot 1 and 3 , and for Lot 3 is at the limit of variation allowed. |  |  |  |  |  |  |  |  |  |  |  |
| Lab 3 tested replicates 1 \& 2 on Merck PDA, and replicates 3 \& 4 on Merck MA, the low results from MA were unusual compared to all the other test results. |  |  |  |  |  |  |  |  |  |  |  |

5) Raw data for the voluntary lab test analysis, comparison of replicate tolerances and comparison with accredited lab median result as a standard

|  |  | Lot 1 | High infect |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lab No | Accredite | 1 | 2 | 3 | 4 | Mean | Replicate tolerance: Table 5B, Part 1, 4 replicates of 100 seeds. | Actual difference | Tolerance against standard median of $28,5 \%$ probability for 400 seed tests in different laboratories, Miles (1963) Table G8 | Actual difference from median |
| 5 | No | 31 | 32 | 29 | 31 | 30.75 | 16 | 3 | 6 | 3 |
| 6 | No | 28 | 26 | 35 | 24 | 28.25 | 16 | 11 | 6 | 0 |
| 7 | No | 36 | 25 | 37 | 31 | 32.25 | 17 | 13 | 6 | 4 |
| 9 | No | 25 | 25 | 24 | 21 | 23.75 | 15 | 4 | 6 | 4 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mean | 28.75 |  |  |  |  |
|  |  |  |  |  | Median | 29.50 |  |  |  |  |
|  |  |  | Accredited labs median |  |  | 28.25 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | All replicate results of voluntary labs are in tolerance. |  |  |  |  |  |  |  |  |  |
|  | All voluntary labs are in tolerance of the median set by the accredited lab results as a standard. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  | Lot 2 | Healthy |  |  |  |  |  |  |  |
| Lab No | Accredite | 1 | 2 | 3 |  | Mean | Replicate tolerance: 4 replicates of 100 seeds, homogeneity results 1 acceptable | Actual difference from accredited labs median | Tolerance against standard median of Nil, for 400 seed tests in different laboratories, homogeneity results 1 acceptable | Actual difference from 1 |
| 5 | No | 1 | 0 | 0 | 0 | 0.25 | 1 | 1 | 1 | 0 |
| 6 | No | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 7 | No | 3 | 3 | 2 | 3 | 2.75 | 1 | 3 | 1 | 2 |
| 9 | No | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mean | 0.75 |  |  |  |  |
|  |  |  |  |  | Median | 0.13 |  |  |  |  |
|  |  |  | Accredited | medi |  | 0 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | All replicate results of voluntary labs are in tolerance. |  |  |  |  |  |  |  |  |  |
|  | 3 out of 4 voluntary labs are in tolerance of the median set by the accredited lab results as a standard. One lab is outside that tolerance, lab 7. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  | Lot 3 | Medium in |  |  |  |  |  |  |  |
| Lab No | Accredite | 1 | 2 | 3 | 4 | Mean | Replicate tolerance: Table 5B, Part 1, 4 replicates of 100 seeds. | Actual difference | Tolerance against standard median of $8,5 \%$ probability for 400 seed tests in different laboratories, Miles (1963) Table G8 | Actual difference from median |
| 5 | No | 16 | 7 | 8 | 9 | 10.00 | 10 | 9 | 4 | 2 |
| 6 | No | 4 | 7 | 6 | 8 | 6.25 | 8 | 4 | 4 | 2 |
| 7 | No | 9 | 7 | 14 | 14 | 11.00 | 11 | 7 | 4 | 3 |
| 9 | No | 5 | 3 | 3 | 4 | 3.75 | 6 | 2 | 4 | 2 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Mean | 7.75 |  |  |  |  |
|  |  |  |  |  | Median | 8.13 |  |  |  |  |
|  |  |  | Accredited | medi |  | 7.75 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | All replicate results of voluntary labs are in tolerance. |  |  |  |  |  |  |  |  |  |
|  | All voluntary labs are in tolerance of the median set by the accredited lab results as a standard. |  |  |  |  |  |  |  |  |  |

6. Calculation of Lab z scores

Z score calculation based on the mean result of accredited labs and standard deviation of population

|  |  |  | Lot 1 | High | Lot 2 | Healthy | Lot 3 | Medium |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lab code | Mean | Z score | Mean | Z score | Mean | Z score |
|  | 0 | 1 | 28.25 | 0.122 | 0.00 | 0.000 | 8.75 | 0.724 |
|  | 0 | 2 | 28.00 | 0.020 | 0.00 | 0.000 | 6.75 | -0.103 |
|  | 0 | 3 | 25.25 | -1.096 | 0.00 | 0.000 | 3.50 | -1.447 |
|  | 0 | 4 | 28.25 | 0.122 | 0.00 | 0.000 | 8.25 | 0.517 |
|  | 0 | 8 | 30.00 | 0.832 | 0.00 | 0.000 | 7.75 | 0.310 |
|  | V | 5 | 30.75 | 1.137 | 0.25 | 0.291 | 10.00 | 1.241 |
|  | V | 6 | 28.25 | 0.122 | 0.00 | 0.000 | 6.25 | -0.310 |
|  | V | 7 | 32.25 | 1.746 | 2.75 | 3.205 | 11.00 | 1.654 |
|  | V | 9 | 23.75 | -1.705 | 0.00 | 0.000 | 3.75 | -1.344 |
|  |  |  |  |  |  |  |  |  |
| Mean of accredited labs |  |  | 27.95 |  | 0.00 |  | 7.00 |  |
| Median of accredited labs |  |  | 28.25 |  | 0.00 |  | 7.75 |  |
| Standard deviation of population |  |  | 2.463 |  | 0.858 |  | 2.418 |  |

