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1. New statistical tool for determining working sample weight to
amend Table 2C of ISTA Rules

2. Number of sub-lots for which an OIC established for the lot is still
valid

3. Group testing: number of groups to ensure that estimation Is
possible

4. Opportunities...



1. New statistical tool for determining working
sample weight to amend
Table 2C of ISTA Rules



Population (all possible varieties, lots, labs and
100 seeds samples) of 100 seed weights
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If Y~ N(m, %), then
X=kYis~N(km, k*c?)

Y ~ Normal distribution with
mean m and variance o2

Assumption

m

X : %2500 (k= 25) or 25000 (k = 250)
seeds weight”

/\I\

km : _
0.95 quantile

95% confident to have at least 2500 or 25000 seeds
In a random sample with the 0.95 guantile weight



Y ~ Normal distribution W|th

Population (all possible varieties, lots, labs and

100 seeds samples) Of 100 seed welghts mean 171 and variance O-

Assumption /\

m

Estimating m and ¢

2 experiment designs to capture all the possible sources of variation at its best

Experiment design 1.
2-way nested design

Lab1
Min 6 varieties recommended
\tet2/  Min 12 lots recommended
L
i _Lab2

*+,Min 2 labs - 6 labs preferred

|
** Labé

QOO0 4
0000
[o]o1o0]

ey

otl \ot 12/
OlO Olo
Min 8 reps recommended 8 88

Experiment design 2:
2-way crossed design

e | Min 3 varieties

Lab 1 Lot 2/ \Lot3/\!_ot4/ Wis7eis) recommended
ol. olo om oio OlO olo
e |

Lab 2 \Lot 2/ \Lot 3/\!.ot4/ \Lot5/ \otﬁ / Min 6 lots
LA LA 8l8 08 recommended
ity 2
Lab 3 \Lot 2/ \Lot 3/\!.ot4/ \{.ots/\.ots/
£ o &g R Min 8 reps
88 & A £ 8 racommended

Min 2 labs - 6 labs preferred



Y ~ Normal distribution with
Population (all possible varieties, lots, labs and

. 2
100 seeds samples) of 100 seed weights mean F11 and variance O

Assumption /\

m

Estimating m and ¢

Fitting linear random effects model

Experiment design 1
(2-way nested design)

100_seeds_weight = general_mean

+ Lab_effect —> ~ iid. N(O,ULzab)
+ Lot(within Lab)_effect —~ i.i.d. N(0,02,,)

+ Residual —~i.i.d. N(O,Glges)

Experiment design 2
(2-way crossed design)

100_seeds_weight = general_mean

+ Lab_effect — ~iid. N(O,Ufab)

+ Lot_effect — ~iid. N(O,Ufot)
+ Lab X Lot_effect — ~.i.d. N(O’O'l?abeot)

+ Residual

— ~iid. N(0,05.5)

m = general_mean

—

> _ 2 2 2
0~ = O-Lab + JLot + JRes

—

5 _ 2 2 y) 2
0% = 014ap T Olot T OLabxrot T ORes

(estimates are denoted with a “hat”)



Prior to estimation, reps outliers are detected using Grubbs’s method

Yi Tz'
0.4460 0.7600748
0.4190 0.3052932
0.4000 0.0147383
0.4270 0.4400433
0.2600 2.3728652
0.4100 0.1536993
0.4420 0.6926998
0.4030 0.035793

0 =] O U o W B | T

1. Calculate the mean y and the standard-deviation s :
y = 0.4009 s = 0.0594

2. For each value y; in the dataset, calculate: T; =

3. If T; is greater than a critical value corresponding to a given significance probability (usually
5%), then identify y; as an outlier



I Yi Ti’
1 0.4460 0.7600748
2 0.4190 0.3052932
3 0.4000 0.0147383
4 0.4270 0.4400433
5 0.2600 Critical values for 5% level of significance
6 0.4100 0.1536993
Sample |Critical | Sample | Critical | Sample | Critical | Sample [ Critical
7 0.4420 0.6926998 size value size value size value size value
8 0.4030 0.035793 3 1.15 15 2.55 27 2.86 39 3.03
' . 4 1.48 16 2.59 28 2.88 40 3.04
5 1.71 17 2.62 29 2.89 50 3.13
6 1.89 18 2.65 30 2.91 60 3.20
7 02 19 2.68 31 2.92 70 3.26
8 2.1D 20 2.71 32 2.94 80 3.31
9 2.21 21 2.73 33 2.95 90 3.35

10 2.29 22 2.76 34 2.97 100 3.38
11 2.34 23 2.78 35 2.98 110 3.42
12 2.41 24 2.80 36 2.99 120 3.44
13 2.46 25 2.82 37 3.00 130 3.47
14 2.51 26 2.84 38 3.01 140 3.49

ye IS identified as an outlier



Grubbs’s method critical values can be calculated from the student distribution as

follows:

\
where: . n:sample size

. a . level of significance

ta i 1— = critical point of a t-distribution with n — 2 degrees of freedom
2n

2n’

l(n — 1)t1_ a

2
mn‘zl

n l(n —-2)+ (-

a
2n’

2)’]

Can be easily implemented into Excel:
B6 - Jx || =SORT(((($BS4-1} TINV(SBS3/5B34, 5B854-2)) ~2)/(5BSA*(( SBH4-2) +TINV(SBS3/ 5854, 5B54-2) 2} )}
A B C D

Grubbs' method: critical values

Level of significance:

5%

Sample size:

15

Grubbs’ critical value:

~N D B W MN =

2.55

10



2-way nested design 2-way crossed design

100_seeds_weight = general_mean 100_seeds weight = general mean
+ Lab_effect —~iid. N(0,6%,) + Lab_effect — ~iid. N(0,074)
+ Lot(within Lab)_effect —»~iid. N(0,67,,) + Lot _effect — ~iid. N(0,62,;)
+ Residual —~iid. N(0,02.) + Lab X Lot_effect — ~iid. N(0,07,,x10t)
+ Residual — ~iid. N(0,03.5)

* There are several methods to get estimates of variance components:
. ANOVA based methods

. Maximum Likelihood (ML) methods
. REstricted Maximum Likelihood (REML) methods

« Today, the preferred method is REML ... but it requires heavy computations

Selected Henderson Method | (ANOVA based method) for its ease of
Implementation in Excel.

This method works for unbalanced data; for balanced data, it
provides identical estimates as REML method

11



1. Calculations details — Variance components estimation

Henderson Method |

Searle, S.R., Casella, G. and C.E. McCulloch (1992).
In Variance components (pp. 429, 434-435). Wiley-Interscience, New York.

Thisis whatis | i o
var(#3) = 20%(E,w?)/ D, e

Implemented in w0 1D D e s cuose cusmen
the C8.|CU|8IOI‘ cov(33,87) = —268(Ewi/n)/D FA. WITH INTERACTION, AAXDOM MODIL

(Crump, 1951; Searle, 1956).
hp"*’l"]"ﬁ’“ ,
R (w il e =Ll b and d=l2.

F.2. THE 2.WAY NESTED CLASSIFICATION & with :

ny >0 for s(ijbeetl amd TTay=N o

Yo R4 3+ Byt e "; s w-n-;“nmm | i
i 2...,0 j=12....5 and kw124, 5 b Tom Lk in 75
T~ EIyi/n, st r.-;‘.lm
m."-’ SSH-T, - T,
SMI'-?.. ~N+ T,

bo=Xb, and N=IZnm,.




X 12300 (k = 25) or 25000 (k = 250)
seeds weight”

—’/M\l¥ Reporting

w : 0.95 quantile

If w<1g, w is rounded up to the nearest
multiple of 0.01

If 1lg<w <5g, wis rounded up to the nearest
multiple of 0.1

If w=>=5g, wis rounded up to the nearest
integer

Examples:

w Value reported
0.34567 0.35
0.96781 0.97
0.99001 1.00
1.08962 1.1
4.45687 4.5
5.00768 6
9.76981 10

13



Calculator for adding working weights to Table 2C of the ISTA Rules
THE CACULATOR 15 PROVIDED "AS 15", WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL THE AUTHORS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY ARISING IN CONNECTION WITH THE CALCULATOR.

Experiment designs

Twao types of experiment designs are considered in the calculator:

Experiment design 1: Experiment design 2:
2-way nested design 2-way crossed design

Lab 1 T T ST
[Racara} Lab 1 W s 0w

i Lab 2
T TN TN T
iR T Lab 2 "WYY i e
Lab & I i
s ]
e [ 1 W s B s ]

Lab 3 VT e e W

considered across a
rieties represented in the

A minimum of six lot
minimum of thre

A minimum of 12 lots are considered across a
minimum of $ix varisties represented in the
experiment as a general rule. | rule.

These 12 lots will be evaluated by a minimum Thy ix lots will be evaluated each by a minimum
of two labs however six labs are pre e of two labs however six labs are preferred.

A minimum of eight 100 seed rep Ami reps are weighed
per lot. per lo.

m of eight 100 see

Calculations

The rep weights are entered into the unprotected yellow cells of the calculator, If experiment design 1 is used, data for the
different lots from each lab are entered in different columns. In order to avoid conditional formatting conflicts, always
copy,/paste data in the caleulator using Paste Special = Values.

. For each lot in a given laboratory, cutliers are highlighted in red using Grubbs's method at the 5% significance level
[Grubbs, 1969]). These cutliers are then excluded manually from the computaticns,

. The linear random effects models used for the analysis of the two experiment designs are:

. Experiment design 1

T Ei

in'which:

- ¥ is the observed 100-seeds weight of lotj (j= 1, 2, ., i) inlabi [i=1, 2, .., o) and replication k (k= 1,2, .., ny);
. i is the intercept;

.ot is the random effect of lab § o Lid N0, o5 )05

is the random effect of lot j within 1ab i (8, ~ i L d.N (0,071

is the residual (e, ~ ii.d N (0,08:)]

. Experiment design 2:

Yoyp = g T @+ B+ (@Bl < e

inwhich:

¥y is the observed 100-seeds weight of lotj (j=1,2, ... b} inlabi(i=1,2,
. is the intercept;

. & is the random effect of lab i (o, ~ i i d. N (0, 07, )0

- By is the random effect of lotj (§; ~ i.i d. N(0, 5 )i
- (@), is the random interaction effect between lab fand lotj [{af)y; ~ bl d N0, 0fupwrar )i
81y i the residual (g ~ b i d. V(0,08 1).

. ) and replication k (k=1,2

The calculator automatically selects which model to fit according to the dataset structure.

Appendix F). When an estimate is negative, this estimate is reported as zero. Let 52, ,

Instructions | Calculator

15
16
17
18
19
20

22
25
24
25
26
27
28
29
30

32
55
34
35
36

38
ES
40
41
42

A B C D E F G H | J K L M N O P Q R 5
Supporting Data of New Species Proposal to ISTA Rules Table 2C
Submitter Name: Lab Full Name: Number of observations ]
Scientific Name of the Crop kind: Genus Species ISTA Member Code: Number of labs o
Contact Email: Number of lots [
General mean
Change any value in a yellow cell Lab variance
Lot variance
Lab x Lot variance
Residual variance Decision
2500 seed weight™
25000 seed weight™
*95% Confidence
Rep weights in red are identified as outliers by Grubbs’s method at the 5% significance level and needs to be suppressed (removed) manually
Lab \ Seed lot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Repl
Rep2
Rep3
Repd
Rep5
Lab 1 RS
Rep7
Rep8
Rep%
Rep10!
Repll
Rep12
Mean
St. Dev.
Number of reps 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0

Grubbs critical values

Repl
Rep2
Rep3
Repd
Rep5
RepE
Rep7
Rep8
Rep9
Rep10!

Lab 2

Rent1
Instructions | Calculator

4 G

14



« The spreadsheet is protected (no password): entering data is only possible
In yellow cells

* In order to avoid conditional formatting conflicts, always copy/paste data in

the calculator using Paste Special - Values When needed, some warnings

are displayed in red

A B 8 D E F G H | J K L M N Qo p Q R
. Supporting Data of New Species Proposal to ISTA Rules Table 2C
2
3 Submitter Name: XXX Lab Full Name: YYY Number of observations 232
4 | Scientific Name of the Crop kind: Basella B. alba ISTA Member Code: 222 Numbker of labs 7
5 Contact Email: AAA Number of lots 5 6 lots are preferred for an accurate estimagion
6 General mean 3.2584
7 Change any value in a yellow cell Lab variance 0.0020037
8 Lot variance 0.1453077
9 Lab x Lot variance 0.0963083
0 Residual varlanl:l-a _ 0.0101622 Decision _— —
11 2500 seed weight 103 100 (] Decision value should be greater than or equal to 103 >
12 25000 seed weight* 1022 1050 [ — I
13 * 95% Confidence
14 Rep weights in red are identified as outliers by Grubbs's method at the 5% significance level and needs to be suppressed (removed) manually
15| Lab \Seed lot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 Repl 2.3672 3.4036 2.3585 3.1927 3.7473
33 Rep2 2.2734 3.4207 2.3530 3.0972 3.7309
34 Rep3 2.3198 3.5878 2.4268 3.2861 3.7818
35 Rep4 2.3866 3.4322 2.3827 3.2858 3.7380
36 Rep5 2.3600 3.3296 2.2917 3.2861 3.7908
37 lab2 Repb 2.3720 3.3873 2.2663 3.1889 3.8542
38 Rep7 3.4601 22407 3.1103
39 Rep8 @ 01 o -
Reps Outliers are automatically
41 Repl0 . . . .
Repis identified in red
43 Repl2
24 Mean 2.3465 3.4316 2.3872 3.2084 3.7738
45 St.Dev.  0.04225 0.08008 0.16963 0.07636 0.04613
46 Nurnber of reps 6 7 8 3 6 0 /] /] /] 1] /] 0 0 0 0 0
47 | Grubbs critical values 1.89 2.02 2.13 2.13 1.89 15




Although not recommended, the calculator can provide estimates of the variance
components when there is only 1 lab

Random effects model: 100_seeds_weight = general_mean + Lot _effect + Residual
}
~ i.i.d. N(0,0%;)

~i.id. N(0,0%.)

Balanced dataset example:

Number of observations 224
Number of labs 1 6 labs are preferred for an accurate estimation
Number of lots 28 REML estimates (R package Tmed)
General mean 0.4261
- Number of obs: 224, groups: Lot, 28
ab—enismes
Lot variance 0.0040998 « Random effects:
X \ Groups Variance

kab-wlotvariance ~ Lot 0.0040998
Residual variance 0.0003288 4 Decision Residual 0.0003288

2500 seed weight” 14
25000 seed weight" 134
* 95% Confidence

16



2. Number of sub-lots for which an OIC
established for the lot is still valid



2. 2021 Tomato experiment — Experiment design

6 companies

3 seed lots/company
produced in 11

different countries
Different sizes: W}
£ 7 i == | | |
0 10 20 30 40 50 60
Seed lot weight (kg) O O O Question:
5 sub-samples taken Q00 are the 5
to cover spatially 8 8 8 sub-samples
across each lot 000 homz)egseur:tesou@

' 90 samples

Measurements: * Purity test
« Germination test: 15t count at day 6,
final count at days 8 to 14 .



Purity % are all equal to 100%

19



1. Homogenelty of the test replications for normal seedlings, final count:
-> for each of the 90 samples, the 4 reps are within ISTA tolerances

2. Heterogeneity of the 5 samples from each lot

- Use of the H statistic:

400 S
_ #_of _seeds_in_the_sample X (#_of _subsamples — 1) x observed_subsample_variance

mean X (100 — mean)

- H has a chi-squared distribution
—> Statistical test: p-value that all the sample values are equal

- The lower the p-value, the greater the statistical evidence for heterogeneity

20



Normal seedlings %, 1 Normal seedlings %, final
count count Abnormal seedlings % Dead seeds %
Lot

Company weight | Mean H p-value Mean H p-value Mean H p-value Mean H p-value
A 3kg 85.8 8.80 0.0663 96.0 417 0.3839 3.6 1.38 0.8471 0.4 12.05 0.0170
A 5.9kg 76.6 18.57 0.0010 92.0 2.17 0.7038 3.0 2.75 0.6006 5.0 1.68 0.7936
A 7.7kg 84.8 17.01 0.0019 89.0 10.62 0.0311 8.2 2.55 0.6356 2.8 15.87 0.0032
B 1.5kg 87.2 5.30 0.2575 89.6 1.37 0.8488 3.0 0.00 1.0000 7.4 1.87 0.7600
B 20kg 78.2 16.61 0.0023 98.2 1.81 0.7706 1.8 1.81 0.7706 0.0
B ckg 63.8 12.26 0.0155 92.0 5.43 0.2455 4.6 8.39 0.0784 3.4 3.90 0.4201
C 5.9kg 42.0 46.63 0.0000 98.6 3.48 0.4813 1.2 2.70 0.6094 0.2 16.03 0.0030
C 6.4kg 34.8 18.48 0.0010 89.6 4.81 0.3076 7.6 2.96 0.5642 2.8 412 0.3906
C 7.8kg 60.6 41.08 0.0000 98.4 8.13 0.0869 1.0 8.08 0.0887 0.6 8.05 0.0898
D 2.1kg 71.4 18.26 0.0011 96.4 3.69 0.4498 1.6 3.05 0.5497 2.0 4.08 0.3951
D 3.3kg 96.0 27.08 0.0000 98.2 6.34 0.1754 1.0 8.08 0.0887 0.8 4.03 0.4017
D 3.7kg 17.8 29.74 0.0000 96.8 6.20 0.1848 1.8 6.34 0.1754 1.4 3.48 0.4813
E 13kg 37.8 29.74 0.0000 97.4 5.05 0.2818 1.6 8.13 0.0869 1.0 8.08 0.0887
E 6.8kg 90.2 8.51 0.0747 96.4 1.38 0.8471 1.4 3.48 0.4813 2.2 5.21 0.2669
E 7.8kg 74.6 30.23 0.0000 98.4 3.05 0.5497 1.2 2.70 0.6094 0.4 12.05 0.0170
F 32kg 84.6 18.79 0.0009 94.2 18.16 0.0012 1.2 2.70 0.6094 3.4 23.38 0.0001
F 36kg 90.2 3.98 0.4084 95.8 6.76 0.1491 2.0 4.08 0.3951 2.2 5.21 0.2669
F 51kg 97.0 5.50 0.2399 97.0 5.50 0.2399 1.6 3.05 0.5497 1.4 3.48 0.4813

Evidence for Evidence for
heterogeneity homogeneity

21



 Homogeneity for the germination final count is reinforced by the R test:

Normal seedlings %, final count

Company Lot weight Mean H p-value H test Range  p-value Rtest
A 3kg 96.0 4,17 0.3839 2.0 0.3993
A 3.0kg 02.0 2,17 0.7038 1.3 0.8333
A 7.7kg 89.0 10.62 0.0311 3.8 0.0522
B 1.5kg 89.6 1.37 0.8488 1.3 0.8867
B 20kg 08.2 1.81 0.7706 1.5 0.8251
B okg 02.0 5.43 0.2433 2.9 0.2264
C 3.0kg 08.6 3.48 0.4813 1.7 0.7493
C 6.4kg 89.6 4,81 0.3076 2.6 0.3430
C 7.8kg 08.4 8.13 0.0869 3.2 0.1601
D 2.1kg 06.4 3.69 0.4408 2.1 0.3505
D 3.3kg 08.2 6.34 0.1754 3.0 0.2083
D 3.7kg 06.8 8.20 0.1848 34 0.1124
E 13kg 07.4 3.05 0.2818 2.3 0.3868
E 6.8kg 06.4 1.38 0.8471 11 0.9422
E 7.8kg 08.4 3.05 0.3407 1.6 0.7922
F 32kg 04.2 18.16 0.0012 6.0 0.0002
F 36kg 93.8 6.76 0.1491 3.0 0.2135
F Jlkg 97.0 3.30 0.2399 2.3 0.4602

22



Table 5F. Tolerances between results of two tests made
in different laboratories on the same or different samples
from the same seed lot (two-way test at 5 % significance
level) on 400 seed tests. Updated by ISTA Statistics Tech-
nical Committee, based on Miles (1963) Table G5, column
C, 400 seed tests.

Average germination percentage of 2 tests Tolerance
51-100 % 0-50 %

99 2 2
98 3 3
96-97 4-5 4
94-95 6-7 5
91-93 8-10 6
88-90 11-13 7
84-87 14-17 8
79-83 18-22 9
74-78 23-27 10
68-73 28-33 11
60-67 34-41 12
51-59 42-50 13

Assumption: seed lot
is homogeneous

Estimate of lot value:
p from k seeds

M
IS acceptable

A

M sub-lots

¥

Estimate by another
laboratory of the
value for the sub-lot
with true minimum
value:

p, from k seeds

—

Compute the probability that p

and p, are not different using
ISTA Tolerance Table 5F

High probability for a wide
range of true lot values

Try a smaller
M

23



@: seed lot is hom@

True lot value: O
v I 7 Compute the
M true sub-lot values 7; from i probability that p is not
multivariate hypergeometric ! Repeated different from p, as
distribution * ® 00 00000 000 ¢ | 10,000 == where Tis the
¥ I l times 10000 .
Minimum of the true M sub-lot E E number Pf .tlmes p and
values: 7,,, = min({ﬂi}{\il) ? E p, are within tolerance
¥ ! l
Test value from another lab I I T
on the sub-lot with : i ! >‘“”
minimum value from a ! ! Croms
Beta-binomial distribution: p, E i e TR— T a——
t _ : S —
Estimate of lot value: ) = = :
o S ——
p from k seeds e ——
¥ e e -

Determine if p and po are within * Laffont, J-L., Hong, B., Kuo, B-J. and K.M. Remund (2019).

tolerance according to ISTA O O Exact theoretical distributions around the replicate results
Tolerance Table 5F of a germination test. Seed Science Research 29, 64-72.

24




_ Exact theoretical distributions around the
replicate results of a germination test

cambridge.org/ssr

Jean-Louis Laffont!, Bonnie Hong?, Bo-Jein Kuo? and Kirk M. Remund*

N = 1,600,000
7=90%
G =1,440,000

VR

Random assignment Sub-lot Sub-lot  Sub-lot  Sub-lot
of the seeds into

1 2 3 4
m=asu-ots RS PRl BISM BRARE

(n = 400,000 seeds
per sub-lot)

Seed lot: N seeds with
G = Nr seeds to germinate

Distribution of the number
# of seeds to 360,023 360,007 359,968 360,002 of seeds to qerminate
germinate in 359.270 312,987 368,976 398,767 9

In the sub-lots:
each sub-lot 360,030 292,345 387,969 399,656 . _
multivariate hypergeometric

distribution

25



M true sub-lot values m; from
multivariate hypergeometric

distribution

¥

Minimum of the true M sub-lot
values: m,,, = min({m;}iL,)

Lot weight = 50 kg

50.0-

s Z?*ﬁ

90.0-

89.8-

89.6-

L] L]
73.8-

0.1 kg 0.2 kg 0.5kg 1 kg 25kg 5kg 0.1kg 0.2 kg 0.5 kg 1kg 25 kg 5kg
(500 sub-lots) (250 sub-lots) (100 sub-lots) (50 sub-lots) (20 sub-lots) (10 sub-lots) (500 sub-lots) (250 sub-lots) (100 sub-lots) (50 sub-lots) (20 sub-lots) (10 sub-lots)
p=90% | p=95%

95 0-
. i
|
L]
*
L]
OMa 0.2 kg 0.5 kg 1 kg 25kg 5kg O1kg 02kg 0.5 kg 1kg 2.5kg 5kg

(500 sub-lots) (250 sub-lots) (100 sub-lots)

Lot weight

(50 sub-lots) (20 sub-lofs)

)

(500 sub-lots) (250 sub-lots) (100 sub-lots) (50 sub-lots) (20 sub-lots) (10 sub-lots) (10 sub-lots)

Sub-lots weight/Number of sub-lots (M = ,
Sub—-lot weight

The larger the number
of sub-lots M,
the lower the
minimum values m,,

26



M true sub-lot values m; from
multivariate hypergeometric

distribution ®
L] i
Minimum of the true M sub-lot E
values: m,,, = min({m;}iL,) ®
Number of sub-lots = 20
p=50% | pP=75%
3 750-
‘ | ==

50.0-
— | — |
74.5-
49.0-
& .
. 74.0

]

TC 48.5 -
m i

1kg 2kg S5kg 10 kg 50 kg 100 kg 1kg 2kg 5kg 10 kg 50 kg 100 kg
| p=90% | p=95%
90.00- 95.0-
89.75- ‘ 04 8 i
L] *
4 H
89.50-
94.6
L]
89.25-
94 4-
% ]
L] L]
1 L(g 2 L(g 5 l‘(g mlkg SDIKg 105 kg 1 l‘(g 2 L(g 5 L(g 10‘kg 50‘kg md kg

Lot weight

\\N"stt‘o

S

(&7 SR

s SeepyEsti® \f.

trel —

2,010 5
P>

The lower the lot weight,
the lower the
minimum values m,,
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Refresher:

Test value from another lab

on the sub-lot with
minimum value from a
Beta-binomial distribution: p;

 The result from a different lab is not from a Binomial(k, 17,,,)
but from a distribution with a variance larger than the binomial variance

* The over-dispersion has been quantified by Miles (1963) and is taken
Into account in tolerance tables for comparing different laboratories

Over_dispersed_variance

\

= f =2.38—-0.8321
Binomial variance f tm

A model for generating over-dispersed binomial data is the Beta-binomial model
with parameters k, @ and [3:
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Estimate of lot value:

p from k seeds
¥

Determine if p and p, are within
tolerance according to ISTA
Tolerance Table 5F

: Generated from binomial distribution with
parameters k and

- p and p, are independent
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2. Number of sub-lots determination — Results

W= 1.5 kg Wgyp=0.1kg (M= 15) W o= 50 kg, W= 1kg (M=50) W oe= 50 kg, Wgy=0.1kg (M=500)

7 (%) Prob(p andp, arewithin Tol) Prob(p and p, are within Tol)  Prob(p and p, are within Tol)

50 0.9865 0.9857 0.9887
55 0.9858 0.9854 0.9836
60 0.9870 0.9871 0.9867
65 0.9852 0.9866 0.9854
70 0.9850 0.9853 0.9860
75 0.9840 0.9845 0.9842
80 0.9848 0.9858 0.9832
85 0.9861 0.9851 0.9849
90 0.9861 0.9892 0.9887
95 0.9893 0.96894 0.9885
99 0.9951 0.9959 0.9958

* For two extreme lot sizes (1.5 kg and 50 kg) and different number of sub-lots
(15, 50 and 500), all the probabillities are very high (above 0.98)

« Evidence that given that the original lot is homogeneous, there is no limit in
the number of sub-lots that can be elaborated from it
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3. Group testing: number of groups to ensure
that estimation Is possible



Suppose people are tested for a disease

Who has the disease? == |dentification
What is the prevalence of the disease? === estimation

(i.e. what is the proportion of people with the disease?)

One solution: individual testing
Identification: population

i ﬁ i i i >Estimation: sample

+0r - +0r - +0r - +or - tor-
- - " " i
" - - - - Analysis performed on
“ “ “ “ “ blood samples

Problem: can be expensive

Group testing: cost savings

32



« Group testing:

e
>0 =0
el
>0 e
el
>0 e

+ or + or + or

==

=0,
==

Analysis performed on
| mixed blood samples

« Identification: if the group Is positive, the individuals
making up the group are retested to determine which of

the members have the disease.

« Estimation: ﬁ
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 |dentification: original development of group testing by
Robert Dorfman in 1943:

The Detection of Defective Members of Large Populations

Author(s): Robert Dorfman
Source: The Annals of Mathematical Statistics, Vol. 14, No. 4 (Dec., 1943), pp. 436-440

The inspection of the individual members of a large population is an expensive
and tedious process. Often in testing the results of manufacture the work can
be reduced greatly by examining only a sample of the population and rejecting
the whole if the proportion of defectives in the sample is unduly large. In many
inspections, however, the objective is to eliminate all the defective members of
the population. This situation arises in manufacturing processes where the
defect being tested for can result in disastrous failures. It also arises in certain
inspections of human populations. Where the objective is to weed out indi-
vidual defective units, a sample inspection will clearly not suffice. It will be
shown in this paper that a different statistical approach can, under certain con-
ditions, yield significant savings in effort and expense when a complete elimina-
tion of defective units is desired.

The method will be described by showing its application to a large-scale pro-
Ject on which the United States Public Health Service and the Selective Service
System are now engaged. The object of the program is to weed out all syphilitic
men called up for induction. TUnder this program each prospective inductee is
subjected to a “Wasserman-type” blood test. The test may be divided con-
veniently into two parts:
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proportion of individuals in the population with the attribute

[ p :

°* n . number of groups

* m . number of individuals per group

°* X . number of positive groups out of m

p=1-(1-2)"

When all the groups are positive, p = 1 and the result is not considered.

1

n

Y; 1 random variable =1 if group i is positive
=0 if group i is negative
ify=0

Pindividual 1 neg & individual 2 neg& .. & individualm neg)
= P{individual 1 neg} x Plindividual 2 neg) ® --- x P(individual m neg)
={l-p) % l=p) Hoeem (=g

m) X = )", ¥; has a binomial distribution B(n,1 — (1 —p)™)

Maximum Likelihood Estimation:

Functional invariance of MLEs property:
If 6 is the MLE for @, and if g(8) is any transformation of 8,

then the MLE fora = g(8) is : @ = g(8) .
Leto=1—-(1—p)™.

1
Rearranging:p=1— (1 —68)m = g(8)
The random variable X giving the number of positive
groups x out of n has a binomial distribution B(n, 8).

Then: & =2 isthe MLE for @ .
n

SN ﬁ:g(é)zl—(l—%ﬁ
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« Taking into account assay errors:

A : false negative (group tests neg when at least 1 individual is pos) rate = 1 — sensitivity
6 : false positive (group tests pos when all individuals are neq) rate = 1 — Specificity

5=1—|1
P 1—1—0

with x being the number of groups out of n testing positive

See:. |statistical considerations in seed purity testing for
transgenic traits Seed Science Research (2001) 11, 101-119

Kirk M. Remund, Doris A. Dixon', Deanne L. Wright? and Larry R. Holden?

36



Seed lot

10 groups of 150 seeds are taken from the lot using
an appropriate sampling procedure (e.g. ISTA)

-~ -~
3 /%4 /%4 /%4 /%4 /%4 /%4 /%4 /%4 /%4
B BUAY BN BN TN TN TN TN TN TN
9 = s A 3 9 = s 9 = s r 7 9 = s 9 = s 9 = s 9 = s 9 2 5

Each sample is 6@0 6 groups
tested for 0 ’33 are negative
presence/absence }09. N
of GM seeds | @ Fostve  4groups
| control are positive
Negative
control
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6 groups of 7 4 1—10
150 seeds Point estimate Hh=1—[(1—-—
are negative of p, the true P = 10
proportion of
. f B GM seeds in >
groups o the lot . 0
150 seeds = 0.34%
are positive _
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- proportion of individuals in the population with the attribute
. number of groups

- number of individuals per group

- number of positive groups out of m
1

=1-(-3)
When all the groups are positive,
estimation Is not possible!

SEESEE= R~

The probability that all groups are positive could

help to ensure that the testing plan (n, m) will
ensure estimation of p
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Probability that all groups are positive: 2 cases

1. Infinite population size (e.g. seed lot)

2. Finite population size (e.g. sample distributed for
a Proficiency Test)



1. Infinite population size: easy

k groups of m balls are sampled from a population of balls with a proportion m of
white balls. The random variable Y; “number of white balls in group 1" has a binomial
distribution with parameters m and m:
m
P(Y; =n;) = (,, ) "i(1 —m)m "
L
Let A; be the event “the i group has at least one white ball”. Then, the probability

that the 1st group is positive is:

P(A)=1- (%") (1 —m)"=1-(1-m)".

The probability that the 15t and the 224 groups have at least one white ball is:
P(A;NA)=1-1-mMA-1-m™=1-1-m™)*
The probability that all the groups have at least one white balls (i.e. that all the
groups are positive) is:
k
P ﬂAi =(1—(1—-m)™)*

i=1
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2. Finite population size: less easy

n1 white balls and n2 black balls (n1 + n2 = n) are placed into k bins of maximum
capacity m; km = n. Let X be the random variable “number of bins without any white
balls”. The random variable Y “number of white balls in a sample of m balls” has a
hypergeometric distribution with parameters n, n; and m.
()t
P(Y =w) =0
()
Let A1 be the event “the 15t sample has no white ball”. The probability that the 15t
sample has no white ball is:
() _ ()
kmy  — (Ekmy
( m ) ( ny )
The probability that the 15t and the 2" samples have no white ball is:
(km—nl) (km—nl—m) (.‘cm—Zm)
m % m — ny
(km) (k.m—m) (ch)
m m ny

The probability that the first s samples (s < k) have no white balls is:

P(Ay) =

P(A; NAy) =

km—sm
P(Niz1 4i) = C )

)

The probability that any s particular bins have no white balls is:

p Y :(k)( Tl_:l )

s km
tel
Ic{1,2,..k} n

Card(I)=s

:Ss

k
(there are [ J possible combinations for s (out of k) bins without white balls).
5

Probability that at least one bin has no white ball:
k

k
P (U K—li) = Z(—l)”lé} (principle of inclusion-exclusion for probability)
=1

i= -
=1

. (kmn— im)
Z( i+ (! —(k;l)
-1 k(- 1)”1(?)11(?‘."1(.’{ 1))
(m) ™ g

The probability of havmg no bin without any white balls is:

PX=0)=1- (nl) a(— )’**1([)(7”(;;1 0) (1) i=o(= 1)()(

ny

And therefore the probability that all the groups are positive is:

)

m(k
n

)
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An Excel calculator has been developed with an implementation of these
computations as well as the computation of the expected number of positive

groups:

. N N O N W N —
PO PRI ©ONOORON

A B
Group testing: on the number of positive groups
Hypothesis: infinite population
Number of groups 10
Number of units per group 300
True characteristic content (%) 0.50%
Probability that all groups are positive 8.09%
Expected number of positive groups 7.8

Change any value in a yellow cell

Infinite population Finite population +

O 00N U N -

A B
Group testing: on the number of positive groups
Hypothesis: finite population (size = 3000 units)
Number of groups 10
Number of units per group 300
True characteristic (%) 0.50%
Probability that all groups are positive 4.66%
Expected number of positive groups 7.9

Change any value in a yellow cell

Infinite population  Finite population +

\"SEP

Q=248

G

= SegpysTn®

Ll

W
C;

43



4. Opportunities
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E[(p — E[AD?] ,
BlaS[ | =Elp]l —p ,
ras(] = Z( 1__ 1/m> x) (1— (1 —p)™)¥(1 — p)m@—0 ., MSE[ﬁ] — E(ﬁ _ p)z]

1I-A-A-pm™n

mmm) New insights for number of groups and group sizes recommendations

Recommendations on the
number of groups to
avoid under-estimation

Recommendations on - g
group size to avoid
under-estimation
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) Estimator of the proportion of the number of white balls from the
observed number of empty bins for the hypergeometric group testing
problem

mm) Needs to solve the equation for ny :

(=)
()

where d is the observed number of positive bins.

d=k| 1-
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Table 2.1. Minimum sampling intensity for seed lots in
containers holding up to and including 100 kg seed

These numbers have

Number of Minimum number of primary samples to be taken

tai
it . . been elaborated over the
-4 3 primary samples from each container )
5-8 2 primary samples from each container years, using the results
9-15 1 primary sample from each container :
16-30 15 primary samples, one each from 15 different from Samp“ng
containers experiments and results
31-59 20 pri les, hf 20 diff t - - :
S SATERS SIS Rat L ol e S R3IS0 from simulation studies.
60 or more 30 primary samples, one each from 30 different
containers

‘ Can we fine-tune these numbers using sampling theory?
(e.g. taking into account the size of the primary samples?)

‘ Use of theoretical results on two-stage sampling?
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dPCR modeling

Method validation:

The total volume of the active partitions is
not constant

The number of active partitions is not
constant

The total number of copies in O@O
the well is not exactly (@]
proportional to
the concentration in the
original DNA extract

False non
fluorescent
partition
False
fluorescent

partition

A negative active partition (i.e. an active

o: non-fluorescent active partition
O: fluorescent active partition
O : passive partition

The partition volumes are not identical

partition without any copies) might
fluoresce falsely with a probability equal
to the false positive fluorescence rate.
Similarly, a positive active partition (i.e.
an active partition with at least one
copy) might not fluoresce with a
probability equal to the false negative
fluorescence rate.

* Revising ISTAgermMV R package
* Reviewing needs Iin terms of number of labs,

number of lots,...
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