ISTA Statistics Committee open meeting: overview of some recent projects

Presenter:Kirk Remund & Jean-Louis LaffontLocation:Verona, ItalyDate:May 31, 2023

ISTA Statistics Committee

Chair: **Kirk Remund** Vice: Jean-Louis Laffont Members: Gabriel Carré Mustapha El Yakhlifi **Zhou Fang Bonnie Hong Bo-Jein Kuo Ray Shillito Thomas Michelon Oluseyi Odubote**

USA France France France USA USA Separate Custom Territory of Taiwan, Penghu, Kinmen and Matsu USA **Brasil** USA

- 1. New statistical tool for determining working sample weight to amend Table 2C of ISTA Rules
- 2. Number of sub-lots for which an OIC established for the lot is still valid
- 3. Group testing: number of groups to ensure that estimation is possible
- 4. Opportunities...

1. New statistical tool for determining working sample weight to amend Table 2C of ISTA Rules

1. Principle

95% confident to have at least 2500 or 25000 seeds in a random sample with the 0.95 quantile weight

1. Principle

Estimating m and σ^2

2 experiment designs to capture all the possible sources of variation at its best

⁶

Fitting linear random effects model

(estimates are denoted with a "hat")

Prior to estimation, reps outliers are detected using Grubbs's method

- 1. Calculate the mean \overline{y} and the standard-deviation s: $\overline{y} = 0.4009$ s = 0.0594
- 2. For each value y_i in the dataset, calculate: $T_i = \frac{|y_i \bar{y}|}{s}$
- 3. If T_i is greater than a critical value corresponding to a given significance probability (usually 5%), then identify y_i as an outlier

1. Calculations details – Outliers detection

i	у _i	T_i
1	0.4460	0.7600748
2	0.4190	0.3052932
3	0.4000	0.0147383
4	0.4270	0.4400433
5	0.2600	2.3728652
6	0.4100	0.1536993
7	0.4420	0.6926998
8	0.4030	0.035793

Critical values for 5% level of significance

Sample	Critical	Sample	Critical	Sample	Critical	Sample	Critical
size	value	size	value	size	value	size	value
3	1.15	15	2.55	27	2.86	39	3.03
4	1.48	16	2.59	28	2.88	40	3.04
5	1.71	17	2.62	29	2.89	50	3.13
6	1.89	18	2.65	30	2.91	60	3.20
7	2.02	19	2.68	31	2.92	70	3.26
8	2.13	20	2.71	32	2.94	80	3.31
9	2.21	21	2.73	33	2.95	90	3.35
10	2.29	22	2.76	34	2.97	100	3.38
11	2.34	23	2.78	35	2.98	110	3.42
12	2.41	24	2.80	36	2.99	120	3.44
13	2.46	25	2.82	37	3.00	130	3.47
14	2.51	26	2.84	38	3.01	140	3.49

 \longrightarrow y₅ is identified as an outlier

Grubbs's method critical values can be calculated from the student distribution as follows:

$$\sqrt{\frac{\left[(n-1)t_{1-\frac{\alpha}{2n},n-2}\right]^{2}}{n\left[(n-2)+\left(t_{1-\frac{\alpha}{2n},n-2}\right)^{2}\right]}}$$

where: . *n* : sample size

. α : level of significance . $t_{1-\frac{\alpha}{2n},n-2}$: $1-\frac{\alpha}{2n}$ critical point of a *t*-distribution with n-2 degrees of freedom

Can be easily implemented into Excel:

	B6 ▼ (<i>f</i> _x =SQRT	((((\$B\$4-1)*TINV	(\$B\$3/\$B\$4,\$B\$4-:	2))^2)/(\$B\$4*((\$B	\$4-2)+TINV(\$B\$3	/\$B\$4,\$B\$4-2)^2)))	
	A	В	С	D	E	F	G
1	Grubbs' method:	critical	values				
2							
3	Level of significance:	5%					
4	Sample size:	15					
5							
6	Grubbs' critical value:	2.55					
7							

1. Calculations details – Variance components estimation

- There are several methods to get estimates of variance components:
 - . ANOVA based methods

. . .

- . Maximum Likelihood (ML) methods
- . REstricted Maximum Likelihood (REML) methods
- Today, the preferred method is REML ... but it requires heavy computations

Selected Henderson Method I (ANOVA based method) for its ease of implementation in Excel.
This method works for unbalanced data; for balanced data, it provides identical estimates as REML method

Henderson Method I

Searle, S.R., Casella, G. and C.E. McCulloch (1992). In Variance components (pp. 429, 434-435). *Wiley-Interscience*, New York.

This is what is implemented in the calculator

```
[F.2]
                                           THE 2-WAY NESTED CLASSIFICATION
                                                                                                                                          429
                                                                                                                                                                                                                                                                                                                                                                                      WITH INTERACTION, BANDON MIDDE
 Then
                                                                                                                                                                                                                                                                                                                                              [FA]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          435
                                                                                                                                                                                                                                                                                                                  [F.4]
                                                   \operatorname{var}(\tilde{\sigma}_{\epsilon}^2) = 2\sigma^4(\Sigma_i w_i^2)/D,
                                                                                                                                                                                                                                                    APPENDIX F
                                                                                                                                                                                            434
                                                                                                                                                                                                                                                                                                                                                Thes
                                                                                                                                                                                                      PART II. THE 2-WAY CROSSED CLASSIFICATION
                                                                                                                                                                                                                                                                                                                                                                                            d_s^2 = SSE/(N-1) = MSE
                                                   \operatorname{var}(\tilde{\sigma}_{*}^{2}) = 2\sigma_{*}^{4}(N - a + \Sigma_{*}w_{*}^{2}/n_{*}^{2})/D
                                                                                                                                                                                                                                                                                                                                                and with
  and
                                                                                                                                                                                                                        F.4. WITH INTERACTION, RANDOM MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                               ka - Kan
                                                                                                                                                                                                                                                                                                                                                                                    N-k1 k3-K1
                                             \operatorname{cov}(\hat{\sigma}_{e}^{2}, \hat{\sigma}_{e}^{2}) = -2\sigma_{e}^{4}(\Sigma_{i}w_{i}^{2}/n_{i})/D
                                                                                                                                                                                                                                                                                                                                                                                                                               Ka - Kan
                                                                                                                                                                                                                                                                                                                                                                                   k-K. N-K.
                                                                                                                                                                                            a. Model
                                                                                              (Crump, 1951; Searle, 1956).
                                                                                                                                                                                                                                                                                                                                                                                            - k. K. - k. N-k. - k. + K.s.
                                                                                                                                                                                                                                    y_{i,k} = \mu + \alpha_i + \beta_j + \gamma_0 + \epsilon_{i,k}
                                                                                                                                                                                                                                                                                                                                                                                                                  SSA - (a - 1)MSE
                                                                                                                                                                                                                 i = 1,2,...,a, j=1,2,...,b and k=1,2,...,n_{in}
                                                                                                                                                                                                                                                                                                                                                                                                                   SS8 - (A - 1) MSE
                                   F.2. THE 2-WAY NESTED CLASSIFICATION
                                                                                                                                                                                             with:
                                                                                                                                                                                                                                                                                                                                                                                                         SSAB* -LI - a - b + DMSE
                                                                                                                                                                                                                       n_{ij} > 0 for s(i,j)-cells and \Sigma_i \Sigma_j n_{ij} = N.
   a. Model
                                                                                                                                                                                                                                                                                                                                                 as in (32) of Section 5.3b. This is equivalent to calculating
                                                                                                                                                                                             b. Henderson Method I estimators
                                                                                                                                                                                                                                                                                                                                                                          \delta_{s} = [SSB + SSAB^{*} - (z - z)MSE]/(N - k_{1})
                                                     y_{i,\mathbf{a}} = \mu + \alpha_i + \beta_{ij} + e_{i,\mathbf{a}};
                                                                                                                                                                                                 Calculate Table F.1 and, for n<sub>a</sub> > 0,
                          i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b_i and k = 1, 2, \dots, n_{ij}.
                                                                                                                                                                                                                    T_{0} = \Sigma_{1}\Sigma_{2}\Sigma_{3}Y_{10}^{2}, T_{s} = \Sigma_{1}Y_{1s}^{2}/n_{s}, T_{s} = \Sigma_{2}Y_{1s}^{2}/n_{s}
                                                                                                                                                                                                                                                                                                                                                  and
                                                                                                                                                                                                                                                                                                                                                                           0. = [SSA + SSAB* -(1 - b)MSE](N - 4.)
    with
                                                                                                                                                                                                                               T_{xx} = \Sigma_0 \Sigma_j y_{y_0}^1 / n_d and T_x = y_{-}^2 / N;
                                               b_i = \Sigma_i b_i and N = \Sigma_i \Sigma_j n_{ij}
                                                                                                                                                                                                                                  SSA = T_A - T_a, SSB = T_B - T_a.
                                                                                                                                                                                                                                                                                                                                                   with which
                                                                                                                                                                                                                                                                                                                                                  \delta_{1}^{2} = \{(N-k_{1}^{*})\delta_{R} + (k_{2}-k_{2}^{*})\delta_{R} - \{3SA - (a-1)MSE\}\}/(N-k_{2}^{*}-k_{1}^{*}+k_{12}^{*}),
                                                                                                                                                                                                                              SSAB^* = T_{AB} - T_A - T_B + T_a,
     b. Analysis of variance estimators
                                                                                                                                                                                                                                                                                                                                                                                         \delta_{\theta}^2 = \delta_{\theta} - \delta_{\tau}^2 and \delta_{\tau}^2 = \delta_{\theta} - \delta_{\tau}^2
                                                                                                                                                                                                                                   SSE = T_0 - T_{AB}
        Calculate
                                                                                                                                                                                                                                                                                                                                                                                                                                                            (Searth, 1958).
                           k_1 = \sum_i n_{ii}^2 / N, \quad k_3 = \sum_i \sum_j n_{ij}^2 / N, \quad k_{1,2} = \sum_i (\sum_i n_{ii}^2 / n_{ij}) \pm \frac{2}{N} = 3
                           T_A = \Sigma_i y_{i*}^2 / n_i, \quad T_{AB} = \Sigma_i \Sigma_j y_{ij}^2 / n_{ij},
                                                                                                                                                                                                               TABLE F.I. ANALYSIS OF VARIANCE STREAMED OF VARIANCE COMPONENCE P
                                                                                                                                                                                                                                                                                                                                                  6. Variances of Henderson Method I estimators (under normality)
                                                                                                                                                                                                                    THE 2 WAY CROSSED CLASSIFICATION, INTERACTION, RANDOM MODIFIC
                           T_0 = \Sigma_i \Sigma_j \Sigma_k y_{i,k}^2 \quad \text{and} \quad T_s = y_-^2/N \;.
                                                                                                                                                                                                                                                                                                                                                                                                 varid21 = 242 (N - 1)
                                                                                                                                                                                                                    Terms eeeded for calculating estimators and their variances.
                                                                                                                                                                                                                        For estimators only, calculate k1, k2, k2, k4, and k23
                                                                                                                                                                                                                                                                                                                                                    For P given above and for H and I being
     Then
                         \hat{\sigma}_{e}^{2} = (T_{0} - T_{AB})/(N - b_{c}),
                                                                                                                                                                                                                                                                   \forall k_1 = \mathbf{L}_1 \mathbf{a}_1^2
                                                                                                                                                                                                           V: k_1 \rightarrow \Sigma_{\mathcal{A}}^{-1}
                                                                                                                                                                                                                                                                                                                                                                                                 0 0 -1
                                                                                                                                                                                                                                                                  \nabla k_{s} = \sum (\sum a_{s}^{T})/a_{s}
                                                                                                                                                                                                            \forall i_n = \Sigma_i (\Sigma_i \pi_{i_1}^2)/n_i
                         \sigma_{\theta}^{2} = [T_{AB} - T_{A} - (b_{c} - a)\delta_{\theta}^{2}]/(N - k_{12}),
                                                                                                                                                                                                                                                                                                                                                                                                                                               8-1
                                                                                                                                                                                                                                                                      k_{q} = \Sigma_{q} \kappa_{q}^{2}
                                                                                                                                                                                                               k_{a} = \Sigma_{i} \kappa_{a}^{2}
                                                                                                                                                                                                                                                                                                                                                                                                                                            -a-h+1
                          \vartheta_{s}^{2} = [T_{s} - T_{s} - (k_{12} - k_{3})\vartheta_{s}^{2} - (a - 1)\vartheta_{s}^{2}]/(N - k_{1})
                                                                                                                                                                                                               k_1 = \Sigma_0 \Sigma_0 a_0^2 V/a_0
                                                                                                                                                                                                                                                                      k_n = \sum_{i} \sum_{i=1}^{n} \frac{y^i}{n_i}
                                                                                                                                                                                                               \lambda_n = \Sigma_{\rm A} \Sigma_{\rm A} \Sigma_{\rm A}^2 \beta^2/m_{\rm e}^2
                                                                                                                                                                                                                                                                      ALL = TATASP/MS
                                                                                                                                                                                                                                                                                                                                                                                \operatorname{var}(\hat{a}^2) = \mathbf{P}^{-1}[\mathbf{H}\operatorname{var}(t)\mathbf{H}] + \operatorname{var}(d_1^2)\mathbf{H}]\mathbf{P}
                                                                                                                         (Searle, 1961).
                                                                                                                                                                                                               k_{nn} = \Sigma_i (\Sigma_i n_{nn}^2)/n_n
                                                                                                                                                                                                                                                                      k_{11} = \Sigma_1(\Sigma, n_1^2)/n_1
                                                                                                                                                                                                               \mathbf{L}_{i,j} = \sum_{i} (\sum_{j \in \mathcal{I}} | i \sum_{j \in \mathcal{I}} \mathbf{x}_{j} | i \sum_{j \in \mathcal{I}} \mathbf{x}_{j} | i | \mathbf{x}_{j}
                                                                                                                                                                                                                                                                      k = III. MI. M. M. M. M. M.
     c. Variances of analysis of variance estimators (under normality)
                                                                                                                                                                                                               \mathbf{i}_{11} = \Sigma (\Sigma, \mathbf{x}, \mathbf{x}_1)^T \mathbf{x}_1
                                                                                                                                                                                                                                                                      \lambda_{11} = \sum_{i} \sum_{i} n_{i} n_{i} \frac{V^{2}}{R_{12}}
                                                                                                                                                                                                                                                                                                                                                                                             \operatorname{cont} \Phi^2, \theta^2_{12} = - P^{-1} \Gamma \operatorname{cont} \theta^2_{12}.
                                                                                                                                                                                                                                                                                                                                                     and
                                                                                                                                                                                                               k_{i,1} = \sum_{i} (\sum_{i} \alpha_{i,i}^{\dagger} \alpha_{i,j}) / \alpha_{i}
                                                                                                                                                                                                                                                                      k_{11} = \sum_{i} \sum_{i} \sum_{j} \frac{1}{n_i} \frac{1}{n_i} \frac{1}{n_i} \frac{1}{n_i}
                                                     \operatorname{var}(d_{\ell}^2) = 2\sigma_{\ell}^4/(N-b_{\ell})
                                                                                                                                                                                                               \lambda_{10} = \Sigma I \Sigma \mu_0^2 \mu_0
                                                                                                                                                                                                                                                                      k_{2*} = \Sigma_j (\Sigma_i \pi_j^2) \pi_j
                                                                                                                                                                                                               k_{11} = \Sigma_i \Sigma_{i-1} (\Sigma_i n_i n_i)^2 / n_i n_i.
                                                                                                                                                                                                                                                                     k_{22} = \Sigma_1 \Sigma_1 = (\Sigma_1 n_1 n_2)^2 / n_1 n_2
                                                                                                                                                                                                                                                                                                                                                       where
                                                                                                                                                                                                                                                                                                                                                                                           var(a) = var[T_A T_P T_{AB} T_a]
                                                                                                                                                                                                                                                                                                                                                      Var(t) has 10 different elements, each element is a function of the 10 squares
     Calculate
                                         k_4 = \Sigma_i \Sigma_j n_{ij}^3, \quad k_5 = \Sigma_i (\Sigma_j n_{ij}^3/n_0),
                                                                                                                                                                                                           VIL-IIA!
                                                                                                                                                                                                                                                                     An ~ I.I.A.
                                                                                                                                                                                                                                                                                                                                                     and product of \sigma_{2}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2} and \sigma_{2}^{2}. The 10 x 10 matrix of these coefficients in bicase to of \sigma_{2}^{2}, \sigma_{3}^{2}, \sigma_{3}^{2} and \sigma_{2}^{2}. The 10 x 10 matrix of these coefficients in bicase to of \sigma_{2}^{2}, \sigma_{3}^{2}, \sigma_{3}^{2} and \sigma_{2}^{2}.
                                                                                                                                                                                                               $11 = LIAAA,
                                                                                                                                                                                                                                                                      k_{j_0} \sim \Sigma_i \Sigma_j n_{ij}^2 n_i n_{ij}
                                         k_{6} = \Sigma_{i} (\Sigma_{j} n_{ij}^{2})^{2} / n_{i}, \quad k_{2} = \Sigma_{j} (\Sigma_{j} n_{ij}^{2})^{2} / n_{i}^{2}.
                                                                                                                                                                                                                                                                                                                                                      shown in Table F.2. Apart from N_1 \in h_1 and unity. Table F.2 involves only
                                                                                                                                                                                                               \hat{x}_{g+} = \sum_i \sum_j n_{ij}^2 / n_i \cdot n_{ij}
                                                                                                                                                                                                                                                                      k_{11} = \Sigma_1 \Sigma_1 n_1^2 / n_1 n_2
                                         k_{0} = \Sigma_{i} n_{i} (\Sigma_{j} n_{ij}^{2}), \quad k_{0} = \Sigma_{i} n_{i}^{2}.
                                                                                                                                                                                                            \bigvee k_i = k_i : N for all s
```


- If w < 1 g, w is rounded up to the nearest multiple of 0.01
- If $1 g \le w < 5 g$, w is rounded up to the nearest multiple of 0.1
- If $w \ge 5 \text{ g}$, w is rounded up to the nearest integer

Examples:

W	Value reported
0.34567	0.35
0.96781	0.97
0.99001	1.00
1.08962	1.1
4.45687	4.5
5.00768	6
9.76981	10

	А	В	С	D	E	F	G	Н	I	J	K	L	Μ	Ν	0	Р	Q	R	S
1				Su	pporting Da	ata of New	Species	s Proposal t	o ISTA Ru	les Tabl	e 2C								
2		Subn	itter Name:			Lab	Full Name:			1	Number of ob:	servations	0	1					
4	Scientif	ic Name of th	e Crop kind: Genu	s S	pecies	ISTA Men	nber Code:	:			Number of lab	s	0						
5						Con	tact Email:				Number of lot	s	0						
6										•	General mean								
7					Change any v	alue in a yello	w cell				Lab variance								
8										•	Lot variance			1					
9											Lab x Lot varia	nce							
10											Residual varia	nce		Decision					
11											2500 seed v	veight*							
12											25000 seed w	veight*							
13											* 95% Confidence								
14	1.1	V Constant	Rep weights in red	are identifie	d as outliers by	Grubbs's meth	od at the 5	i% significance l	evel and nee	ds to be su	opressed (remove	d) manually		12	10		45	10	47
15	Lab	\ Seed lot	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	1/
17		Rep1																	
18		Rep2																	
19		Rep4																	
20		Rep5																	
21	Lab 1	Rep6																	
22		Rep7																	
23		Rep8																	
24		Rep9 Rep10																	
26		Rep10																	
27		Rep12																	
28		Mean																	
29		St. Dev.																	
30	N	umber of reps	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	Grubbs	critical values																	
32		Rep1																	
33		Rep2																	
34		Rep3																	
35		Rep4																	
37		René																	
38	Lab 2	Rep7																	
39		Rep8																	
40		Rep9																	
41		Rep10																	
42	•	Instructio	ns Calculator	(†)									4						
- 1	r											-							

1. Overview of the calculator

 The spreadsheet is protected (no password): entering data is only possible in yellow cells

When needed, some warnings are displayed in red

	Α	B	С	D	E	F	G	Н	I.	J	K	L	М	N	0	Р	Q	R
1 2					Supporting [Data of Nev	w Species	Proposal	to ISTA Ru	iles Table	2C							
3		Submi	tter Name:	Х	хх	Lab	o Full Name:		YYY		Number of c	observations	232		· · · ·			
4 5	Scientific	Name of the	Crop kind:	Basella	B. alba	ISTA Me	mber Code:	;	ZZZ		Number of l	abs	7					
5						Co	ntact Email:	A	AA		Number of l	ots	5	6 lots are pre	eferred for an a	accurate estima	nion 🔵	
6		_								_	General mea	in	3.2584					
7					Change any v	value in a yello	ow cell				Lab variance	•	0.0020037					
8											Lot variance		0.1453077					
9											Lab x Lot va	riance	0.0963083		-		Ļ	
10											Residual var	iance	0.0101622	Decision				
11											2500 seed	weight*	103	100	Decision value	ue should be g	reater than o	requal to 103
12											25000 seed	weight*	1022	1050				
13			on woights	in rod are identifi	od as outlions by G	ubbe's mothe	d at the E% si	mificanco los	and noods	to bo suppros	 95% Confidence od (romovod)) 	e manually						
14	Lab \s	Seed lot	1	2	as outliers by G	1 ubbs s metrio 4	uature 570 sig	sinncance iei 6	7	suppres 8	9	10	11	12	13	14	15	16
32		Rep1	2.3672	3.4036	2.3585	3.1927	3.7473				-				10		10	10
33		Rep2	2.2734	3.4207	2.3530	3.0972	3.7309											
34		Rep3	2.3198	3.5878	2.4268	3.2861	3.7818											
35		Rep4	2.3866	3.4322	2.3827	3.2858	3.7380											
36		Rep5	2.3600	3.3296	2.2917	3.2861	3.7908											
37	Lab 2	Rep6	2.3720	3.3873	2.2663	3.1889	3.8542											
38		Rep7		3.4601	2.2407	3.1103												
39		Repa			2.1115	3.2201					Ou	tliers a	are aut	tomat	tically			
41		Rep10									_ 04			Contac	lically			
42		Rep11										iden	ntified i	in red				
43		Rep12										iadi			•			
44		Mean	2.3465	3.4316	2.3872	3.2084	3.7738											
45		St. Dev.	0.04225	0.08008	0.16963	0.07636	0.04613											
46	Nu	rnber of reps	6	7	8	8	6	0	0	0	0	0	0	0	0	0	0	0
47	Grubbs c	ritical values	1.89	2.02	2.13	2.13	1.89											

1. Overview of the calculator

Although not recommended, the calculator can provide estimates of the variance components when there is only 1 lab

Random effects model: 100_seeds_weight = general_mean + Lot_effect + Residual

~ i.i.d. $N(0,\sigma_{Lot}^2)$ ~ i.i.d. $N(0,\sigma_{Res}^2)$

Balanced dataset example:

Number of observations	224]	
Number of labs	1	6 labs are pret	ferred for an accurate estimation
Number of lots	28		REML estimates (R package 1me4)
General mean	0.4261	1	Number of the 224 means let 28
Lab variance		1	Number of obs: 224, groups: Lot, 28
Lot variance	0.0040998 -		Random effects:
Lab x Lot variance			Groups Variance
Residual variance	0.0003288 <	Decision	— Residual 0.0003288
2500 seed weight*	14		
25000 seed weight*	134		
* 95% Confidence			

2. Number of sub-lots for which an OIC established for the lot is still valid

2. 2021 Tomato experiment – Experiment design

Measurements:

- Purity test
- Germination test: 1st count at day 6,

final count at days 8 to 14

2. 2021 Tomato experiment – Analysis – Sub-samples homogeneity for purity

Purity % are all equal to 100%

- 1. Homogeneity of the test replications for normal seedlings, final count:
 - \rightarrow for each of the 90 samples, the 4 reps are within ISTA tolerances
- 2. Heterogeneity of the 5 samples from each lot
 - \rightarrow Use of the *H* statistic:

 $H = \frac{\#_of_seeds_in_the_sample \times (\#_of_subsamples - 1) \times observed_subsample_variance}{mean \times (100 - mean)}$

- \rightarrow *H* has a chi-squared distribution
- \rightarrow Statistical test: p-value that all the sample values are equal
- \rightarrow The lower the p-value, the greater the statistical evidence for heterogeneity

2. 2021 Tomato experiment – Analysis – Sub-samples homogeneity for germination

		Norm	nal seedlin count	ngs %, 1 st	Norma	al seedlin; count	gs %, final	Abno	rmal see	edlings %	D	ead seed	s %
Company	Lot weight	Mean	H	p-value	Mean	H	p-value	Mean	Н	p-value	Mean	H	p-value
А	3kg	85.8	8.80	0.0663	96.0	4.17	0.3839	3.6	1.38	0.8471	0.4	12.05	<mark>0.0170</mark>
А	5.9kg	76.6	18.57	<mark>0.0010</mark>	92.0	2.17	0.7038	3.0	2.75	0.6006	5.0	1.68	0.7936
А	7.7kg	84.8	17.01	<mark>0.0019</mark>	89.0	10.62	<mark>0.0311</mark>	8.2	2.55	0.6356	2.8	15.87	<mark>0.0032</mark>
В	1.5kg	87.2	5.30	0.2575	89.6	1.37	0.8488	3.0	0.00	1.0000	7.4	1.87	0.7600
В	20kg	78.2	16.61	<mark>0.0023</mark>	98.2	1.81	0.7706	1.8	1.81	0.7706	0.0		
В	6kg	63.8	12.26	<mark>0.0155</mark>	92.0	5.43	0.2455	4.6	8.39	0.0784	3.4	3.90	0.4201
С	5.9kg	42.0	46.63	<mark>0.0000</mark>	98.6	3.48	0.4813	1.2	2.70	0.6094	0.2	16.03	<mark>0.0030</mark>
С	6.4kg	34.8	18.48	<mark>0.0010</mark>	89.6	4.81	0.3076	7.6	2.96	0.5642	2.8	4.12	0.3906
С	7.8kg	60.6	41.08	<mark>0.0000</mark>	98.4	8.13	0.0869	1.0	8.08	0.0887	0.6	8.05	0.0898
D	2.1kg	71.4	18.26	<mark>0.0011</mark>	96.4	3.69	0.4498	1.6	3.05	0.5497	2.0	4.08	0.3951
D	3.3kg	96.0	27.08	<mark>0.0000</mark>	98.2	6.34	0.1754	1.0	8.08	0.0887	0.8	4.03	0.4017
D	3.7kg	17.8	29.74	<mark>0.0000</mark>	96.8	6.20	0.1848	1.8	6.34	0.1754	1.4	3.48	0.4813
Е	13kg	37.8	29.74	<mark>0.0000</mark>	97.4	5.05	0.2818	1.6	8.13	0.0869	1.0	8.08	0.0887
Е	6.8kg	90.2	8.51	0.0747	96.4	1.38	0.8471	1.4	3.48	0.4813	2.2	5.21	0.2669
Е	7.8kg	74.6	30.23	<mark>0.0000</mark>	98.4	3.05	0.5497	1.2	2.70	0.6094	0.4	12.05	<mark>0.0170</mark>
F	32kg	84.6	18.79	<mark>0.0009</mark>	94.2	18.16	<mark>0.0012</mark>	1.2	2.70	0.6094	3.4	23.38	<mark>0.0001</mark>
F	36kg	90.2	3.98	0.4084	95.8	6.76	0.1491	2.0	4.08	0.3951	2.2	5.21	0.2669
F	51kg	97.0	5.50	0.2399	97.0	5.50	0.2399	1.6	3.05	0.5497	1.4	3.48	0.4813

Evidence for heterogeneity

Evidence for homogeneity

• Homogeneity for the germination final count is reinforced by the R test:

	_		Norma	al seedlings %, fin	al count	
Company	Lot weight	Mean	H	p-value H test	Range	p-value R test
А	3kg	96.0	4.17	0.3839	2.0	0.5995
А	5.9kg	92.0	2.17	0.7038	1.5	0.8355
А	7.7kg	89.0	10.62	0.0311	3.8	0.0522
В	1.5kg	89.6	1.37	0.8488	1.3	0.8867
В	20kg	98.2	1.81	0.7706	1.5	0.8251
В	6kg	92.0	5.43	0.2455	2.9	0.2264
С	5.9kg	98.6	3.48	0.4813	1.7	0.7493
С	6.4kg	89.6	4.81	0.3076	2.6	0.3430
С	7.8kg	98.4	8.13	0.0869	3.2	0.1601
D	2.1kg	96.4	3.69	0.4498	2.1	0.5505
D	3.3kg	98.2	6.34	0.1754	3.0	0.2083
D	3.7kg	96.8	6.20	0.1848	3.4	0.1124
Е	13kg	97.4	5.05	0.2818	2.5	0.3868
Е	6.8kg	96.4	1.38	0.8471	1.1	0.9422
Е	7.8kg	98.4	3.05	0.5497	1.6	0.7922
F	32kg	94.2	18.16	0.0012	6.0	0.0002
F	36kg	95.8	6.76	0.1491	3.0	0.2135
F	51kg	97.0	5.50	0.2399	2.3	0.4602

2. Number of sub-lots determination – Some details

. . .

Distribution of the number of seeds to germinate in the sub-lots: **multivariate hypergeometric** distribution

2. Number of sub-lots determination – Some details

The larger the number of sub-lots M, the lower the minimum values π_m

2. Number of sub-lots determination – Some details

The lower the lot weight, the lower the minimum values π_m

Lot weight

Refresher:

- The result from a different lab is not from a **Binomial**(k, π_m) but from a distribution with a variance larger than the binomial variance
- The over-dispersion has been quantified by Miles (1963) and is taken into account in tolerance tables for comparing different laboratories

$$\frac{Over_dispersed_variance}{Binomial_variance} = f = 2.38 - 0.8321\pi_m$$

A model for generating over-dispersed binomial data is the Beta-binomial model with parameters k, α and β :

$$\alpha = \pi_m \left(\frac{k-1}{f^2 - 1} - 1 \right) \qquad \beta = \alpha \left(\frac{1}{\pi_m} - 1 \right)$$

2. Number of sub-lots determination – Results

	$W_{Lot} = 1.5$ kg, $W_{Sub} = 0.1$ kg ($M = 15$)	$W_{Lot} = 50 \text{ kg}, W_{Sub} = 1 \text{ kg} (M = 50)$	$W_{Lot} = 50$ kg, $W_{Sub} = 0.1$ kg ($M = 500$)
π (%)	$Prob(p and p_2 are within Tol)$	Prob(p and p_2 are within Tol)	Prob(p and p_2 are within Tol)
50	0.9865	0.9857	0.9887
55	0.9858	0.9854	0.9836
60	0.9870	0.9871	0.9867
65	0.9852	0.9866	0.9854
70	0.9850	0.9853	0.9860
75	0.9840	0.9845	0.9842
80	0.9848	0.9858	0.9832
85	0.9861	0.9851	0.9849
90	0.9861	0.9892	0.9887
95	0.9893	0.9894	0.9885
99	0.9951	0.9959	0.9958

- For two extreme lot sizes (1.5 kg and 50 kg) and different number of sub-lots (15, 50 and 500), all the probabilities are very high (above 0.98)
- Evidence that given that the original lot is homogeneous, there is no limit in the number of sub-lots that can be elaborated from it

3. Group testing: number of groups to ensure that estimation is possible

3. What is group testing

- Suppose people are tested for a disease
- Who has the disease? identification
 What is the prevalence of the disease? setimation
 (i.e. what is the proportion of people with the disease?)
- One solution: individual testing

- Problem: can be expensive
- Group testing: cost savings

3. What is group testing

• Group testing:

Analysis performed on mixed blood samples

- Identification: if the group is positive, the individuals making up the group are retested to determine which of the members have the disease.
- Estimation: \hat{p}

3. What is group testing

Identification: original development of group testing by Robert Dorfman in 1943:

The Detection of Defective Members of Large Populations Author(s): Robert Dorfman Source: *The Annals of Mathematical Statistics*, Vol. 14, No. 4 (Dec., 1943), pp. 436–440

The inspection of the individual members of a large population is an expensive and tedious process. Often in testing the results of manufacture the work can be reduced greatly by examining only a sample of the population and rejecting the whole if the proportion of defectives in the sample is unduly large. In many inspections, however, the objective is to eliminate all the defective members of the population. This situation arises in manufacturing processes where the defect being tested for can result in disastrous failures. It also arises in certain inspections of human populations. Where the objective is to weed out individual defective units, a sample inspection will clearly not suffice. It will be shown in this paper that a different statistical approach can, under certain conditions, yield significant savings in effort and expense when a complete elimination of defective units is desired.

The method will be described by showing its application to a large-scale project on which the United States Public Health Service and the Selective Service System are now engaged. <u>The object of the program is to weed out all syphilitic</u> men called up for induction. Under this program each prospective inductee is subjected to a "Wasserman-type" blood test. The test may be divided conveniently into two parts: 3. Group testing estimation

- p : proportion of individuals in the population with the attribute
- *n* : number of groups
- *m*: number of individuals per group
- X : number of positive groups out of m

$$\hat{p} = 1 - \left(1 - \frac{x}{n}\right)^{\frac{1}{m}}$$

When all the groups are positive, $\hat{p} = 1$ and the result is not considered.

3. Group testing estimation

• Taking into account assay errors:

 λ : false negative (group tests neg when at least 1 individual is pos) rate = 1 – sensitivity

 δ : false positive (group <u>tests</u> pos when all individuals are neg) rate = 1 - specificity

$$\hat{p} = 1 - \left(1 - \frac{\frac{x}{n} - \delta}{1 - \lambda - \delta}\right)^{1/m}$$

with *x* being the number of groups out of *n* testing positive

See: Statistical considerations in seed purity testing for transgenic traits Seed Science Research (2001) 11, 101–119 Kirk M. Remund^{1*}, Doris A. Dixon¹, Deanne L. Wright² and Larry R. Holden³

3. Group testing estimation example

Seed lot

10 groups of **150** seeds are taken from the lot using an appropriate sampling procedure (e.g. ISTA)

鍐 鑗 鑗 鑗 鑗 鑗 鑗 鑗 鑗 鑗 鑗

Seeds are ground into flour

Each sample is tested for presence/absence of GM seeds Negative control

6 groups are negative 4 groups are positive **3. Group testing estimation example**

3. 2023 project around group testing

- p : proportion of individuals in the population with the attribute
- *n* : number of groups
- *m*: number of individuals per group
- X: number of positive groups out of m

$$\hat{p} = 1 - \left(1 - \frac{x}{n}\right)^{\frac{1}{m}}$$

When all the groups are positive, estimation is not possible!

Probability that all groups are positive: 2 cases

- 1. Infinite population size (e.g. seed lot)
- 2. Finite population size (e.g. sample distributed for a Proficiency Test)

1. Infinite population size: easy

k groups of *m* balls are sampled from a population of balls with a proportion π of white balls. The random variable Y_i "number of white balls in group \underline{i} " has a binomial distribution with parameters *m* and π :

$$P(Y_i = n_i) = {m \choose n_i} \pi^{n_i} (1 - \pi)^{m - n_i}.$$

Let A_i be the event "the <u>i</u>th group has at least one white ball". Then, the probability that the 1st group is positive is:

$$P(A_1) = 1 - {\binom{m}{0}} \pi^0 (1 - \pi)^m = 1 - (1 - \pi)^m.$$

The probability that the 1st and the 2nd groups have at least one white ball is: $P(A_1 \cap A_2) = (1 - (1 - \pi)^m)(1 - (1 - \pi)^m) = (1 - (1 - \pi)^m)^2$.

The probability that all the groups have at least one white balls (i.e. that all the groups are positive) is:

$$P\left(\bigcap_{i=1}^{k} A_i\right) = (1 - (1 - \pi)^m)^k$$

2. Finite population size: less easy

 n_1 white balls and n_2 black balls $(n_1 + n_2 = n)$ are placed into k bins of maximum The probability that any *s* particular bins have no white balls is: capacity *m*; *km* = *n*. Let *X* be the random variable "*number of bins without any white* balls". The random variable Y "number of white balls in a sample of m balls" has a $P\left(\bigcap_{\substack{i\in I\\I\subset\{1,2,\dots,k\}\\Card(I)=s}}A_i\right) = \binom{k}{s}\frac{\binom{km-sm}{n_1}}{\binom{km}{n_1}} = S_s$ hypergeometric distribution with parameters n, n_1 and m. $P(Y = w) = \frac{\binom{n_1}{w}\binom{km-n_1}{m-w}}{\binom{km}{m}}.$ Let A_1 be the event "the 1st sample has no white ball". The probability that the 1st (there are $\binom{k}{s}$ possible combinations for *s* (out of *k*) bins without white balls). sample has no white ball is: $P(A_1) = \frac{\binom{km - n_1}{m}}{\binom{km}{m}} = \frac{\binom{km - m}{n_1}}{\binom{km}{m}}.$ Probability that at least one bin has no white ball: $P\left(\bigcup_{i=1}^{k} A_{i}\right) = \sum_{i=1}^{k} (-1)^{i+1} S_{i} \quad \text{(principle of inclusion-exclusion for probability)}$ The probability that the 1st and the 2nd samples have no white ball is: $P(A_1 \cap A_2) = \frac{\binom{km - n_1}{m}}{\binom{km}{m}} \times \frac{\binom{km - n_1 - m}{m}}{\binom{km - m}{m}} = \frac{\binom{km - 2m}{n_1}}{\binom{km}{m}}.$ $=\sum_{i=1}^{k} (-1)^{i+1} {\binom{k}{i}} \frac{{\binom{km-im}{n_1}}}{{\binom{km}{n_1}}}$ The probability that the first *s* samples (s < k) have no white balls is: $P(\bigcap_{i=1}^{s} A_i) = \frac{\binom{n_1}{km}}{\binom{km}{km}}.$ $= \frac{1}{\binom{km}{n}} \sum_{i=1}^{k} (-1)^{i+1} \binom{k}{i} \binom{m(k-i)}{n_1} .$ The probability of having no bin without any white balls is: $P(X=0) = 1 - \frac{1}{\binom{km}{n}} \sum_{i=1}^{k} (-1)^{i+1} \binom{k}{i} \binom{m(k-i)}{n_1} = \frac{1}{\binom{km}{n}} \sum_{i=0}^{k} (-1)^i \binom{k}{i} \binom{m(k-i)}{n_1}$ And therefore the probability that all the groups are positive is: $1 - \frac{1}{\binom{km}{n}} \sum_{i=0}^{k} (-1)^i \binom{k}{i} \binom{m(k-i)}{n_1}$

An Excel calculator has been developed with an implementation of these computations as well as the computation of the expected number of positive groups:

	A	В		А	В
1	Group testing: on the number of positive group	oups	1	Group testing: on the number of positive gr	oups
2	Hypothesis: infinite population		2	Hypothesis: finite population (size = 3000 units)	
3			3		
4	Number of groups	10	4	Number of groups	10
5	Number of units per group	300	5	Number of units per group	300
6	True characteristic content (%)	0.50%	6	True characteristic (%)	0.50%
7			7		
8	Probability that all groups are positive	8. 09 %	8	Probability that all groups are positive	4.66%
9	Expected number of positive groups	7.8	9	Expected number of positive groups	7.9
10			10		
11	Change any value in a yellow c	ell	11	Change any value in a yellow o	ell
12			12		
13			13		
14			14		
15			15		
16			16		
<	> Infinite population Finite population +			> Infinite population Finite population +	

4. Opportunities

4. Group testing estimator

Revisiting group testing estimator properties: $\operatorname{Var}[\hat{p}] = \operatorname{E}[(\hat{p} - \operatorname{E}[\hat{p}])^2]$, $\operatorname{Bias}[\hat{p}] = \left[\sum_{x=0}^{n-1} \left(1 - \left(1 - \frac{x}{n}\right)^{1/m}\right) {n \choose x} \frac{(1 - (1 - p)^m)^x (1 - p)^{m(n-x)}}{1 - (1 - (1 - p)^m)^n}\right] - p$ $\operatorname{Bias}[\hat{p}] = \operatorname{E}[(\hat{p} - p)^2]$

New insights for number of groups and group sizes recommendations

Estimator of the proportion of the number of white balls from the observed number of empty bins for the hypergeometric group testing problem

Needs to solve the equation for n_1 :

$$d = k \left(1 - \frac{\binom{m(k-1)}{n_1}}{\binom{km}{n_1}} \right)$$

4. Sampling

Number of containers	Minimum number of primary samples to be taken
1-4	3 primary samples from each container
5-8	2 primary samples from each container
9-15	1 primary sample from each container
16–30	15 primary samples, one each from 15 different containers
31-59	20 primary samples, one each from 20 different containers
60 or more	30 primary samples, one each from 30 different containers

These numbers have been elaborated over the years, using the results from sampling experiments and results from simulation studies.

Can we fine-tune these numbers using sampling theory? (e.g. taking into account the size of the primary samples?)

Use of theoretical results on two-stage sampling?

- Method validation:
 - Revising *ISTAgermMV* R package
 - Reviewing needs in terms of number of labs, number of lots,...

- - -

4. Suggestions ?

Thank you!

in 🕞

Follow us on social media: