ISTA Statistics Committee open meeting: overview of some recent projects

Presenter: Kirk Remund \& Jean-Louis Laffont
Location: Verona, Italy
Date: May 31, 2023

ISTA Statistics Committee

Chair:	Kirk Remund	USA
Vice:	Jean-Louis Laffont	France
Members:	Gabriel Carré	France
	Mustapha El Yakhlifi	France
	Zhou Fang	USA
	Bonnie Hong	USA
	Bo-Jein Kuo	Separate Custom
		Territory of Taiwan,
	Penghu, Kinmen	
	and Matsu	
	Ray Shillito	USA
	Thomas Michelon	Brasil
	Oluseyi Odubote	USA

1. New statistical tool for determining working sample weight to amend Table 2C of ISTA Rules
2. Number of sub-lots for which an OIC established for the lot is still valid
3. Group testing: number of groups to ensure that estimation is possible
4. Opportunities...
5. New statistical tool for determining working sample weight to amend Table 2C of ISTA Rules

1. Principle

Population (all possible varieties, lots, labs and 100 seeds samples) of 100 seed weights

Assumption
$Y \sim$ Normal distribution with mean m and variance σ^{2}

$$
\begin{gathered}
X: " 2500(k=25) \text { or } 25000(k=250) \\
\text { seeds weight" }
\end{gathered}
$$

$$
\begin{gathered}
\text { If } Y \sim N\left(m, \sigma^{2}\right) \text {, then } \\
X=k Y \text { is } \sim N\left(k m, k^{2} \sigma^{2}\right)
\end{gathered}
$$

95% confident to have at least 2500 or 25000 seeds in a random sample with the 0.95 quantile weight
$Y \sim$ Normal distribution with mean m and variance σ^{2}

Estimating m and σ^{2}

2 experiment designs to capture all the possible sources of variation at its best

Experiment design 1: 2-way nested design

Lab 1

Experiment design 2:
2-way crossed design

Estimating m and σ^{2}

Fitting linear random effects model

Experiment design 1

(2-way nested design)
100_seeds_weight = general_mean

$$
\begin{aligned}
& + \text { Lab_effect } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{L a b}^{2}\right) \\
& + \text { Lot(within Lab)_effect } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{\text {Lot }}^{2}\right) \\
& + \text { Residual } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{R e s}^{2}\right)
\end{aligned}
$$

Experiment design 2

(2-way crossed design)
100 _seeds_weight $=$ general_mean

$$
\begin{aligned}
& + \text { Lab_effect } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{L a b}^{2}\right) \\
& + \text { Lot_effect } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{L o t}^{2}\right) \\
& + \text { Lab } \times \text { Lot_effect } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{\text {Lab } \times \text { Lot }}^{2}\right) \\
& + \text { Residual } \longrightarrow \sim \text { i.i.d. } N\left(0, \sigma_{\text {Res }}^{2}\right)
\end{aligned}
$$

$$
\widehat{m}=\text { general_mean }
$$

$$
\widehat{\sigma^{2}}=\widehat{\sigma_{L a b}^{2}}+\widehat{\sigma_{L o t}^{2}}+\widehat{\sigma_{R e s}^{2}}
$$

$$
\widehat{\sigma^{2}}=\widehat{\sigma_{L a b}^{2}}+\widehat{\sigma_{L o t}^{2}}+\widehat{\sigma_{L a b \times L o t}^{2}}+\widehat{\sigma_{R e s}^{2}}
$$

Prior to estimation, reps outliers are detected using Grubbs's method

i	y_{i}	T_{i}
1	0.4460	0.7600748
2	0.4190	0.3052932
3	0.4000	0.0147383
4	0.4270	0.4400433
5	0.2600	2.3728652
6	0.4100	0.1536993
7	0.4420	0.6926998
8	0.4030	0.035793

1. Calculate the mean \bar{y} and the standard-deviation s :

$$
\bar{y}=0.4009 \quad s=0.0594
$$

2. For each value y_{i} in the dataset, calculate: $\quad T_{i}=\frac{\left|y_{i}-\bar{y}\right|}{S}$
3. If T_{i} is greater than a critical value corresponding to a given significance probability (usually 5%), then identify y_{i} as an outlier

i	y_{i}	T_{i}
1	0.4460	0.7600748
2	0.4190	0.3052932
3	0.4000	0.0147383
4	0.4270	0.4400433
5	0.2600	2.3728652
6	0.4100	0.1536993
7	0.4420	0.6926998
8	0.4030	0.035793

Critical values for 5\% level of significance

Sample size	Critical value						
3	1.15	15	2.55	27	2.86	39	3.03
4	1.48	16	2.59	28	2.88	40	3.04
5	1.71	17	2.62	29	2.89	50	3.13
6	1.89	18	2.65	30	2.91	60	3.20
7	2.02	19	2.68	31	2.92	70	3.26
8	2.13	20	2.71	32	2.94	80	3.31
9	2.21	21	2.73	33	2.95	90	3.35
10	2.29	22	2.76	34	2.97	100	3.38
11	2.34	23	2.78	35	2.98	110	3.42
12	2.41	24	2.80	36	2.99	120	3.44
13	2.46	25	2.82	37	3.00	130	3.47
14	2.51	26	2.84	38	3.01	140	3.49

y_{5} is identified as an outlier

Grubbs's method critical values can be calculated from the student distribution as follows:

$$
\sqrt{\frac{\left[(n-1) t_{1-\frac{\alpha}{2 n}, n-2}\right]^{2}}{n\left[(n-2)+\left(t_{1-\frac{\alpha}{2 n}, n-2}\right)^{2}\right]}}
$$

where: . n : sample size
. α : level of significance
. $t_{1-\frac{\alpha}{2 n}, n-2}: 1-\frac{\alpha}{2 n}$ critical point of a t-distribution with $n-2$ degrees of freedom
Can be easily implemented into Excel:

4	A	B	C	D	E	F	G
1	Grubbs' method: critical values						
2							
3	Level of significance:	5\%					
4	Sample size:	15					
5							
6	Grubbs' critical value:	2.55					
7							

2-way nested design	2-way crossed design
+ Lab_effect $\quad \longrightarrow \sim$ i.i.d. $N\left(0, \sigma_{\text {Lab }}^{2}\right)$	+ Lab_effect \longrightarrow ~ i.i.d. $N\left(0, \sigma_{\text {Lab }}^{2}\right)$
+ Lot(within Lab)_effect $\longrightarrow \sim$ i.i.d. $N\left(0, \sigma_{\text {Lot }}^{2}\right)$	+ Lot_effect \longrightarrow ~i.i.d. $N\left(0, \sigma_{\text {Lot }}^{2}\right)$
+ Residual $\quad \longrightarrow \sim$ i.i.d. $N\left(0, \sigma_{\text {Res }}^{2}\right)$	+ Lab \times Lot_effect $\longrightarrow \sim$ i.i.d. $N\left(0, \sigma_{L a b \times L o t}^{2}\right)$
	+ Residual \longrightarrow i.i.d. $N\left(0, \sigma_{\text {Res }}^{2}\right)$

- There are several methods to get estimates of variance components:
. ANOVA based methods
. Maximum Likelihood (ML) methods
. REstricted Maximum Likelihood (REML) methods
- Today, the preferred method is REML ... but it requires heavy computations
\longrightarrow Selected Henderson Method I (ANOVA based method) for its ease of implementation in Excel.
This method works for unbalanced data; for balanced data, it provides identical estimates as REML method

Henderson Method I

Searle, S.R., Casella, G. and C.E. McCulloch (1992). In Variance components (pp. 429, 434-435). Wiley-Interscience, New York.

This is what is implemented in the calculator

- If $w<1 \mathrm{~g}, w$ is rounded up to the nearest multiple of 0.01
- If $1 \mathrm{~g} \leq w<5 \mathrm{~g}, w$ is rounded up to the nearest multiple of 0.1
- If $w \geq 5 \mathrm{~g}, w$ is rounded up to the nearest integer

Examples:

w	Value reported
0.34567	0.35
0.96781	0.97
0.99001	1.00
1.08962	1.1
4.45687	4.5
5.00768	6
9.76981	10

1. Overview of the calculator

Calculator for adding working weights to Table 2C of the ISTA Rules

Experiment designs
Two types of experiment designs are considered in the calculato

Experiment design 1: 2-way nested design	Experiment design 2: 2-way crossed design
${ }_{\text {Labs }}$	
ii ii	ii ii ii ii ii
\%im	Lab2 \%emem
ab6	ii ii if ii ii
ii iix	
	ii ii ii ii it
A minimum of 12 lotes rec considered across	
experimentas asemeral rue	
	These six ios will beeexluate
A minimum ofeight 100 seed reps are weidh	Aminimum ofeght 100 seed reps ar per loe

The rep weights are entered into the unprotected yellow cells of fhe calculator. If experiment design 1 is used, datat of the

The linear randem effects models ssed for the analysis of the we evperimen desible
.Experiment design 1 :
in which

$$
y_{l i k}=\mu+\alpha_{i}+\beta_{i l}+e_{i / k}
$$

Experiment design 2

$$
y_{i l k}=\mu+\alpha_{i}+\beta_{l}+(\alpha \beta)_{l j}+e_{l, l /}
$$

The calculator automatically selects which model to fit according to the dataset structure.
 Instructions Calculator \dagger

1. Overview of the calculator

- The spreadsheet is protected (no password): entering data is only possible in yellow cells
- In order to avoid conditional formatting conflicts, always copy/paste data in the calculator using Paste Special \rightarrow Values $\left.\right|_{123} ^{\sim}$

When needed, some warnings are displayed in red

1. Overview of the calculator

Although not recommended, the calculator can provide estimates of the variance components when there is only 1 lab

Random effects model: 100_seeds_weight $=$ general_mean + Lot_effect + Residual

$$
\begin{aligned}
\sim \text { i.i.d. } & \bar{\downarrow}\left(0, \sigma_{\text {Lot }}^{2}\right) \\
& \sim \text { i.i.d. }
\end{aligned}
$$

Balanced dataset example:

Number of observations	224	6 labs are preferred for an accurate estimation	
Number of labs	1		
Number of lots	28		REML estimates (R package 1me4)
General mean	0.4261		
tab-varianee-			
Lot variance	0.0040998		Random effects:
Lab-xLot-variance			Groups Variance
Residual variance	0.0003288	Decision	- Residual 0.0003288
2500 seed weight*	14		
25000 seed weight*	134		

2. Number of sub-lots for which an OIC established for the lot is still valid

6 companies
3 seed lots/company produced in 11 different countries Different sizes:

Seed lot weight (kg)

5 sub-samples taken to cover spatially across each lot

Question:

 are the 5 sub-samples resultsMeasurements:

- Purity test
- Germination test: $1^{\text {st }}$ count at day 6 , final count at days 8 to 14

Purity \% are all equal to 100%

1. Homogeneity of the test replications for normal seedlings, final count:
\rightarrow for each of the 90 samples, the 4 reps are within ISTA tolerances
2. Heterogeneity of the 5 samples from each lot
\rightarrow Use of the H statistic:

$$
H=\frac{\text { \#_of_seeds_in_the_sample } \times\left(\#_{-} \text {of_subsamples }-1\right) \times \text { observed_subsample_variance }}{\text { mean } \times(100-\text { mean })}
$$

$\rightarrow H$ has a chi-squared distribution
\rightarrow Statistical test: p-value that all the sample values are equal
\rightarrow The lower the p-value, the greater the statistical evidence for heterogeneity
2. 2021 Tomato experiment - Analysis - Sub-samples homogeneity for germination

Company	Lot weight	Normal seedlings $\%$, $1^{\text {st }}$ count			Normal seedlings \%, final count			Abnormal seedlings \%			Dead seeds \%		
		Mean	H	p-value									
A	3 kg	85.8	8.80	0.0663	96.0	4.17	0.3839	3.6	1.38	0.8471	0.4	12.05	0.0170
A	5.9 kg	76.6	18.57	0.0010	92.0	2.17	0.7038	3.0	2.75	0.6006	5.0	1.68	0.7936
A	7.7 kg	84.8	17.01	0.0019	89.0	10.62	0.0311	8.2	2.55	0.6356	2.8	15.87	0.0032
B	1.5 kg	87.2	5.30	0.2575	89.6	1.37	0.8488	3.0	0.00	1.0000	7.4	1.87	0.7600
B	20 kg	78.2	16.61	0.0023	98.2	1.81	0.7706	1.8	1.81	0.7706	0.0		
B	6 kg	63.8	12.26	0.0155	92.0	5.43	0.2455	4.6	8.39	0.0784	3.4	3.90	0.4201
C	5.9 kg	42.0	46.63	0.0000	98.6	3.48	0.4813	1.2	2.70	0.6094	0.2	16.03	0.0030
C	6.4 kg	34.8	18.48	0.0010	89.6	4.81	0.3076	7.6	2.96	0.5642	2.8	4.12	0.3906
C	7.8 kg	60.6	41.08	0.0000	98.4	8.13	0.0869	1.0	8.08	0.0887	0.6	8.05	0.0898
D	2.1 kg	71.4	18.26	0.0011	96.4	3.69	0.4498	1.6	3.05	0.5497	2.0	4.08	0.3951
D	3.3 kg	96.0	27.08	0.0000	98.2	6.34	0.1754	1.0	8.08	0.0887	0.8	4.03	0.4017
D	3.7 kg	17.8	29.74	0.0000	96.8	6.20	0.1848	1.8	6.34	0.1754	1.4	3.48	0.4813
E	13 kg	37.8	29.74	0.0000	97.4	5.05	0.2818	1.6	8.13	0.0869	1.0	8.08	0.0887
E	6.8 kg	90.2	8.51	0.0747	96.4	1.38	0.8471	1.4	3.48	0.4813	2.2	5.21	0.2669
E	7.8 kg	74.6	30.23	0.0000	98.4	3.05	0.5497	1.2	2.70	0.6094	0.4	12.05	0.0170
F	32 kg	84.6	18.79	0.0009	94.2	18.16	0.0012	1.2	2.70	0.6094	3.4	23.38	0.0001
F	36 kg	90.2	3.98	0.4084	95.8	6.76	0.1491	2.0	4.08	0.3951	2.2	5.21	0.2669
F	51 kg	97.0	5.50	0.2399	97.0	5.50	0.2399	1.6	3.05	0.5497	1.4	3.48	0.4813

Evidence for heterogeneity

Evidence for
 homogeneity

- Homogeneity for the germination final count is reinforced by the R test:

		Normal seedlings \%, final count				
Company	Lot weight	Mean	\boldsymbol{H}	p-value H test	Range	p-value R test
A	3 kg	96.0	4.17	0.3839	2.0	0.5995
A	5.9 kg	92.0	2.17	0.7038	1.5	0.8355
A	7.7 kg	89.0	10.62	0.0311	3.8	0.0522
B	1.5 kg	89.6	1.37	0.8488	1.3	0.8867
B	20 kg	98.2	1.81	0.7706	1.5	0.8251
B	6 kg	92.0	5.43	0.2455	2.9	0.2264
C	5.9 kg	98.6	3.48	0.4813	1.7	0.7493
C	6.4 kg	89.6	4.81	0.3076	2.6	0.3430
C	7.8 kg	98.4	8.13	0.0869	3.2	0.1601
D	2.1 kg	96.4	3.69	0.4498	2.1	0.5505
D	3.3 kg	98.2	6.34	0.1754	3.0	0.2083
D	3.7 kg	96.8	6.20	0.1848	3.4	0.1124
E	13 kg	97.4	5.05	0.2818	2.5	0.3868
E	6.8 kg	96.4	1.38	0.8471	1.1	0.9422
E	7.8 kg	98.4	3.05	0.5497	1.6	0.7922
F	32 kg	94.2	18.16	0.0012	6.0	0.0002
F	36 kg	95.8	6.76	0.1491	3.0	0.2135
F	51 kg	97.0	5.50	0.2399	2.3	0.4602

 in different laboratories on the same or different samples from the same seed lot (two-way test at 5% significance level) on 400 seed tests. Updated by ISTA Statistics Technical Committee, based on Miles (1963) Table G5, column C, 400 seed tests

Average germination percentage of 2 tests		Tolerance
$51-100 \%$	$0-50 \%$	2
99	2	3
98	3	4
$96-97$	$4-5$	5
$94-95$	$6-7$	6
$91-93$	$8-10$	7
$88-90$	$11-13$	8
$84-87$	$14-17$	9
$79-83$	$18-22$	10
$64-78$	$23-27$	11
$60-67$	$28-33$	12
$51-59$	$34-41$	13

2. Number of sub-lots determination - Some details Assumption: seed lot is homogeneous
 tolerance according to ISTA Tolerance Table 5F

* Laffont, J-L., Hong, B., Kuo, B-J. and K.M. Remund (2019), Exact theoretical distributions around the replicate results of a germination test. Seed Science Research 29, 64-72.

2. Number of sub-lots determination - Some details

sed Science Research
$\begin{aligned} & \text { Exact theoretical distributions around the } \\ & \text { replicate results of a germination test }\end{aligned}$
cambridge.org/ssr
Jean-Louis Laffont ${ }^{1}$, Bonnie Hong 2, Bo-Jein Kuo ${ }^{3}$ and Kirk M. Remund ${ }^{4}$

Seed lot: N seeds with $G=N \pi$ seeds to germinate

$$
(n=400,000 \text { seeds }
$$ per sub-lot)

\# of seeds to germinate in each sub-lot

360,023 360,007 359,968 360,002
359,270 312,987 368,976 398,767
360,030 292,345 387,969 399,656

Distribution of the number of seeds to germinate in the sub-lots:
multivariate hypergeometric distribution
2. Number of sub-lots determination - Some details

> The larger the number of sub-lots M, the lower the minimum values π_{m}

2. Number of sub-lots determination - Some details

M true sub-lot values π_{i} from multivariate hypergeometric distribution
Minimum of the true M sub-lot values: $\pi_{m}=\min \left(\left\{\pi_{i}\right\}_{i=1}^{M}\right)$

The lower the lot weight, the lower the minimum values π_{m}

Refresher:

- The result from a different lab is not from a $\operatorname{Binomial}\left(k, \pi_{m}\right)$ but from a distribution with a variance larger than the binomial variance
- The over-dispersion has been quantified by Miles (1963) and is taken into account in tolerance tables for comparing different laboratories

$$
\frac{\text { Over_dispersed_variance }}{\text { Binomial_variance }}=f=2.38-0.8321 \pi_{m}
$$

A model for generating over-dispersed binomial data is the Beta-binomial model with parameters k, α and β :

$$
\alpha=\pi_{m}\left(\frac{k-1}{f^{2}-1}-1\right) \quad \beta=\alpha\left(\frac{1}{\pi_{m}}-1\right)
$$

	$W_{\text {Lot }}=1.5 \mathrm{~kg}, W_{\text {Sub }}=0.1 \mathrm{~kg}(M=15)$	$W_{\text {Lot }}=50 \mathrm{~kg}, W_{\text {Sub }}=1 \mathrm{~kg}(M=50)$	$W_{\text {Lot }}=50 \mathrm{~kg}, W_{\text {Sub }}=0.1 \mathrm{~kg}(M=500)$
π (\%)	$\operatorname{Prob}\left(p\right.$ and p_{2} are within Tol)	$\operatorname{Prob}\left(p\right.$ and p_{2} are within Tol)	$\operatorname{Prob}\left(p\right.$ and p_{2} are within Tol)
50	0.9865	0.9857	0.9887
55	0.9858	0.9854	0.9836
60	0.9870	0.9871	0.9867
65	0.9852	0.9866	0.9854
70	0.9850	0.9853	0.9860
75	0.9840	0.9845	0.9842
80	0.9848	0.9858	0.9832
85	0.9861	0.9851	0.9849
90	0.9861	0.9892	0.9887
95	0.9893	0.9894	0.9885
99	0.9951	0.9959	0.9958

- For two extreme lot sizes (1.5 kg and 50 kg) and different number of sub-lots (15,50 and 500), all the probabilities are very high (above 0.98)
- Evidence that given that the original lot is homogeneous, there is no limit in the number of sub-lots that can be elaborated from it

3. Group testing: number of groups to ensure that estimation is possible

- Suppose people are tested for a disease
- Who has the disease? \Longrightarrow identification What is the prevalence of the disease? \Longrightarrow estimation (i.e. what is the proportion of people with the disease?)
- One solution: individual testing
ar
$+\infty$
- Problem: can be expensive
- Group testing: cost savings
- Group testing:

Analysis performed on mixed blood samples

- Identification: if the group is positive, the individuals making up the group are retested to determine which of the members have the disease.
- Estimation: \hat{p}
- Identification: original development of group testing by Robert Dorfman in 1943:

```
The Detection of Defective Members of Large Populations
Author(s): Robert Dorfman
Source: The Annals of Mathematical Statistics, Vol. 14, No. }4\mathrm{ (Dec., 1943), pp. 436-440
The inspection of the individual members of a large population is an expensive and tedious process. Often in testing the results of manufacture the work can be reduced greatly by examining only a sample of the population and rejecting the whole if the proportion of defectives in the sample is unduly large. In many inspections, however, the objective is to eliminate all the defective members of the population. This situation arises in manufacturing processes where the defect being tested for can result in disastrous failures. It also arises in certain inspections of human populations. Where the objective is to weed out individual defective units, a sample inspection will clearly not suffice. It will be shown in this paper that a different statistical approach can, under certain conditions, yield significant savings in effort and expense when a complete elimination of defective units is desired.
The method will be described by showing its application to a large-scale project on which the United States Public Health Service and the Selective Service System are now engaged. The object of the program is to weed out all syphilitic men called up for induction. Under this program each prospective inductee is subjected to a "Wasserman-type" blood test. The test may be divided conveniently into two parts:
```

- $p:$ proportion of individuals in the population with the attribute
- n : number of groups
- m : number of individuals per group
- $\quad x$: number of positive groups out of m

$$
\hat{p}=1-\left(1-\frac{x}{n}\right)^{\frac{1}{m}}
$$

When all the groups are positive, $\hat{p}=1$ and the result is not considered.

- Taking into account assay errors:
λ : false negative (group tests neg when at least 1 individual is pos) rate $=1-$ sensitivity δ : false positive (group tests pos when all individuals are neg) rate $=1-$ specificity

$$
\hat{p}=1-\left(1-\frac{\frac{x}{n}-\delta}{1-\lambda-\delta}\right)^{1 / m}
$$

with x being the number of groups out of n testing positive

Seed lot

10 groups of 150 seeds are taken from the lot using an appropriate sampling procedure (e.g. ISTA)

Seeds are ground into flour

Each sample is tested for presence/absence of GM seeds

Negative control

6 groups are negative

4 groups are positive
\(\left.\begin{array}{c}\begin{array}{c}6 groups of

150 seeds

are negative

4 groups of

150 seeds

are positive\end{array}\end{array}\right]\)| Point estimate |
| :---: |
| of p, the true |
| proportion of |\quad| GM seeds in |
| :---: |
| the lot |$\quad=0.34 \%$

- $p:$ proportion of individuals in the population with the attribute
- n : number of groups
- m : number of individuals per group
- $\quad x$: number of positive groups out of m

$$
\hat{p}=1-\left(1-\frac{x}{n}\right)^{\frac{1}{m}}
$$

When all the groups are positive, estimation is not possible!

The probability that all groups are positive could help to ensure that the testing plan (n, m) will ensure estimation of p

Probability that all groups are positive: 2 cases

1. Infinite population size (e.g. seed lot)
2. Finite population size (e.g. sample distributed for a Proficiency Test)

1. Infinite population size: easy

k groups of m balls are sampled from a population of balls with a proportion π of white balls. The random variable Y_{i} "number of white balls in group i " has a binomial distribution with parameters m and π :
$P\left(Y_{i}=n_{i}\right)=\binom{m}{n_{i}} \pi^{n_{i}}(1-\pi)^{m-n_{i}}$.
Let A_{i} be the event "the $i^{\text {th }}$ group has at least one white ball". Then, the probability that the $1^{\text {st }}$ group is positive is:
$P\left(A_{1}\right)=1-\binom{m}{0} \pi^{0}(1-\pi)^{m}=1-(1-\pi)^{m}$.
The probability that the $1^{\text {st }}$ and the $2^{\text {nd }}$ groups have at least one white ball is: $P\left(A_{1} \cap A_{2}\right)=\left(1-(1-\pi)^{m}\right)\left(1-(1-\pi)^{m}\right)=\left(1-(1-\pi)^{m}\right)^{2}$.
The probability that all the groups have at least one white balls (i.e. that all the groups are positive) is:

$$
P\left(\bigcap_{i=1}^{k} A_{i}\right)=\left(1-(1-\pi)^{m}\right)^{k}
$$

3. 2023 project around group testing

2. Finite population size: less easy

n_{1} white balls and n_{2} black balls $\left(n_{1}+n_{2}=n\right)$ are placed into k bins of maximum capacity $m ; k m=n$. Let X be the random variable "number of bins without any white balls". The random variable Y "number of white balls in a sample of m balls" has a hypergeometric distribution with parameters n, n_{1} and m.

$$
P(Y=w)=\frac{\binom{n_{1}}{w}\binom{k m-n_{1}}{m-w}}{\binom{k m}{m}} .
$$

Let A_{1} be the event "the $1^{\text {st }}$ sample has no white ball". The probability that the $1^{\text {st }}$ sample has no white ball is:
$P\left(A_{1}\right)=\frac{\binom{k m-n_{1}}{m}}{\binom{k m}{m}}=\frac{\binom{k m-m}{n_{1}}}{\binom{k m}{n_{1}}}$.
The probability that the $1^{\text {st }}$ and the $2^{\text {nd }}$ samples have no white ball is:

$$
P\left(A_{1} \cap A_{2}\right)=\frac{\binom{k m-n_{1}}{m}}{\binom{k m}{m}} \times \frac{\binom{k m-n_{1}-m}{m}}{\binom{k m-m}{m}}=\frac{\binom{k m-2 m}{n_{1}}}{\binom{k m}{n_{1}}}
$$

The probability that the first s samples $(s<k)$ have no white balls is: $P\left(\cap_{i=1}^{S} A_{i}\right)=\frac{\binom{k m-s m}{n_{1}}}{\binom{k m}{n_{1}}}$.

The probability that any s particular bins have no white balls is:

(there are $\binom{k}{s}$ possible combinations for s (out of k) bins without white balls).
Probability that at least one bin has no white ball:

$$
\begin{aligned}
& P\left(\bigcup_{i=1}^{k} A_{i}\right)=\sum_{i=1}^{k}(-1)^{i+1} S_{i} \quad \text { (principle of inclusion-exclusion for probability) } \\
& \quad=\sum_{i=1}^{k}(-1)^{i+1}\binom{k}{i} \frac{\binom{k m-i m}{n_{1}}}{\binom{k m}{n_{1}}} \\
& \quad=\frac{1}{\binom{k m}{n_{1}}} \sum_{i=1}^{k}(-1)^{i+1}\binom{k}{i}\binom{m(k-i)}{n_{1}}
\end{aligned}
$$

The probability of having no bin without any white balls is:
$P(X=0)=1-\frac{1}{\binom{k m}{n_{1}}} \sum_{i=1}^{k}(-1)^{i+1}\binom{k}{i}\binom{m(k-i)}{n_{1}}=\frac{1}{\binom{k m}{n_{1}}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\binom{m(k-i)}{n_{1}}$
And therefore the probability that all the groups are positive is:

$$
1-\frac{1}{\binom{k m}{n_{1}}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\binom{m(k-i)}{n_{1}}
$$

An Excel calculator has been developed with an implementation of these computations as well as the computation of the expected number of positive groups:

A		B
1	Group testing: on the number of positive groups	
2	Hypothesis: infinite population	
3		
4	Number of groups	10
5	Number of units per group	300
6	True characteristic content (\%)	0.50\%
7		
8	Probability that all groups are positive	8.09\%
9	Expected number of positive groups	7.8
10		
11	Change any value	
12		
13		
14		
15		
16	Infinite population Finite population +	

4. Opportunities

Revisiting group testing estimator properties: $\operatorname{Var}[\hat{p}]=\mathrm{E}\left[(\hat{p}-\mathrm{E}[\hat{p}])^{2}\right]$, $\operatorname{Bias}[\hat{p}]=\mathrm{E}[\hat{p}]-p$,
 $\operatorname{MSE}[\hat{p}]=\mathrm{E}\left[(\hat{p}-p)^{2}\right]$

New insights for number of groups and group sizes recommendations

Estimator of the proportion of the number of white balls from the observed number of empty bins for the hypergeometric group testing problem

Needs to solve the equation for n_{1} :

$$
d=k\left(1-\frac{\binom{m(k-1)}{n_{1}}}{\binom{k m}{n_{1}}}\right)
$$

where d is the observed number of positive bins.

Table 2.1. Minimum sampling intensity for seed lots in containers holding up to and including 100 kg seed

Number of containers	Minimum number of primary samples to be taken
$1-4$	3 primary samples from each container
$5-8$	2 primary samples from each container
$9-15$	1 primary sample from each container
$16-30$	15 primary samples, one each from 15 different containers
$31-59$	20 primary samples, one each from 20 different containers
60 or more	30 primary samples, one each from 30 different containers

These numbers have been elaborated over the years, using the results from sampling experiments and results from simulation studies.

Can we fine-tune these numbers using sampling theory? (e.g. taking into account the size of the primary samples?)

Use of theoretical results on two-stage sampling?

- dPCR modeling

- Method validation:
- Revising ISTAgermMV R package
- Reviewing needs in terms of number of labs, number of lots,...

Thank you!

Follow us on social media:

