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Outline

1. New statistical tool for determining working sample weight to 

amend Table 2C of ISTA Rules

2. Number of sub-lots for which an OIC established for the lot is still 

valid

3. Group testing: number of groups to ensure that estimation is 

possible

4. Opportunities…



1. New statistical tool for determining working

sample weight to amend

Table 2C of ISTA Rules
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1. Principle
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Population (all possible varieties, lots, labs and

100 seeds samples) of 100 seed weights

Assumption

Y ~ Normal distribution with

mean m and variance 𝜎2

m

If Y ~ N(m , 𝜎2), then

X = kY is ~ N(km , 𝑘2𝜎2) km

X : “2500 (k = 25) or 25000 (k = 250) 

seeds weight”

0.95 quantile

95% confident to have at least 2500 or 25000 seeds

in a random sample with the 0.95 quantile weight
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1. Principle

Estimating m and 𝜎2

2 experiment designs to capture all the possible sources of variation at its best 

Experiment design 1:

2-way nested design

Experiment design 2:

2-way crossed design

Min 6 varieties recommended

Min 12  lots recommended

Min 8 reps recommended

Min 2 labs - 6  labs preferred

Lab 1

Lab 3

Min 3 varieties

recommended

Min 6 lots

recommended

Min 8 reps

recommended

Lab 2

Min 2 labs - 6  labs preferred
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1. Principle

Estimating m and 𝜎2

Fitting linear random effects model

Experiment design 1
(2-way nested design)

Experiment design 2
(2-way crossed design)

100_seeds_weight = general_mean

+ Lab_effect

+ Lot_effect

+ Lab × Lot_effect

+ Residual

~ i.i.d. N(0,𝜎𝐿𝑎𝑏
2 ) 

~ i.i.d. N(0,𝜎𝐿𝑜𝑡
2 ) 

~ i.i.d. N(0,𝜎𝐿𝑎𝑏×𝐿𝑜𝑡
2 ) 

~ i.i.d. N(0,𝜎𝑅𝑒𝑠
2 ) 

100_seeds_weight = general_mean

+ Lab_effect

+ Lot(within Lab)_effect 

+ Residual

~ i.i.d. N(0,𝜎𝐿𝑎𝑏
2 ) 

~ i.i.d. N(0,𝜎𝐿𝑜𝑡
2 ) 

~ i.i.d. N(0,𝜎𝑅𝑒𝑠
2 ) 

ෝ𝑚 = ෣𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑚𝑒𝑎𝑛

෢𝜎2 = ෣𝜎𝐿𝑎𝑏
2 + ෢𝜎𝐿𝑜𝑡

2 + ෣𝜎𝐿𝑎𝑏×𝐿𝑜𝑡
2 + ෢𝜎𝑅𝑒𝑠

2

(estimates are denoted with a “hat”)

෢𝜎2 = ෣𝜎𝐿𝑎𝑏
2 + ෢𝜎𝐿𝑜𝑡

2 + ෢𝜎𝑅𝑒𝑠
2

7



1. Calculations details – Outliers detection

Prior to estimation, reps outliers are detected using Grubbs’s method

3. If 𝑇𝑖 is greater than a critical value corresponding to a given significance probability (usually 

5%), then identify 𝑦𝑖 as an outlier

1. Calculate the mean ത𝑦 and the standard-deviation 𝑠 :

ത𝑦 = 0.4009 𝑠 = 0.0594

2. For each value 𝑦𝑖 in the dataset, calculate: 𝑇𝑖 =
𝑦𝑖 − ത𝑦

𝑠
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1. Calculations details – Outliers detection

Critical values for 5% level of significance

Sample

size

Critical

value

Sample

size

Critical

value

Sample

size

Critical

value

Sample

size

Critical

value

3 1.15 15 2.55 27 2.86 39 3.03

4 1.48 16 2.59 28 2.88 40 3.04

5 1.71 17 2.62 29 2.89 50 3.13

6 1.89 18 2.65 30 2.91 60 3.20

7 2.02 19 2.68 31 2.92 70 3.26

8 2.13 20 2.71 32 2.94 80 3.31

9 2.21 21 2.73 33 2.95 90 3.35

10 2.29 22 2.76 34 2.97 100 3.38

11 2.34 23 2.78 35 2.98 110 3.42

12 2.41 24 2.80 36 2.99 120 3.44

13 2.46 25 2.82 37 3.00 130 3.47

14 2.51 26 2.84 38 3.01 140 3.49

𝑦5 is identified as an outlier
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1. Calculations details – Outliers detection

Grubbs’s method critical values can be calculated from the student distribution as 

follows:

where: . n : sample size

. 𝛼 : level of significance

. 𝑡1− 𝛼

2𝑛
,𝑛−2 : 1 −

𝛼

2𝑛
critical point of a t-distribution with 𝑛 − 2 degrees of freedom

(𝑛 − 1)𝑡
1−

𝛼
2𝑛,𝑛−2

2

𝑛 𝑛 − 2 + 𝑡
1−

𝛼
2𝑛,𝑛−2

2

Can be easily implemented into Excel:
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1. Calculations details – Variance components estimation

• There are several methods to get estimates of variance components:

. ANOVA based methods

. Maximum Likelihood (ML) methods

. REstricted Maximum Likelihood (REML) methods 
…

• Today, the preferred method is REML … but it requires heavy computations 

Selected Henderson Method I (ANOVA based method) for its ease of

implementation in Excel.

This method works for unbalanced data; for balanced data, it 

provides identical estimates as REML method
11



1. Calculations details – Variance components estimation

Henderson Method I 

Searle, S.R., Casella, G. and C.E. McCulloch (1992). 

In Variance components (pp. 429, 434-435). Wiley-Interscience, New York.

This is what is

implemented in

the calculator
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1. Calculations details – 0.95 quantile weight

• If 𝑤 < 1 g , w is rounded up to the nearest

multiple of 0.01

• If 1 g ≤ 𝑤 < 5 g, w is rounded up to the nearest

multiple of 0.1

• If 𝑤 ≥ 5 g , w is rounded up to the nearest

integer

Reporting

Examples:
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1. Overview of the calculator
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1. Overview of the calculator

• The spreadsheet is protected (no password): entering data is only possible

in yellow cells

Outliers are automatically

identified in red

When needed, some warnings

are displayed in red

• In order to avoid conditional formatting conflicts, always copy/paste data in 

the calculator using Paste Special → Values
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1. Overview of the calculator

Although not recommended, the calculator can provide estimates of the variance

components when there is only 1 lab 

100_seeds_weight = general_mean + Lot_effect + ResidualRandom effects model:

~ i.i.d. N(0,𝜎𝐿𝑜𝑡
2 ) 

~ i.i.d. N(0,𝜎𝑅𝑒𝑠
2 ) 

Balanced dataset example:
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2. Number of sub-lots for which an OIC

established for the lot is still valid
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2. 2021 Tomato experiment – Experiment design

6 companies

3 seed lots/company

produced in 11

different countries

Different sizes:

90 samples

Measurements: • Purity test

• Germination test: 1st count at day 6,

final count at days 8 to 14

Question:

are the 5

sub-samples

results

homogeneous?

5 sub-samples taken

to cover spatially

across each lot
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2. 2021 Tomato experiment – Analysis – Sub-samples homogeneity for purity

Purity % are all equal to 100%
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2. 2021 Tomato experiment – Analysis – Sub-samples homogeneity for germination

1. Homogeneity of the test replications for normal seedlings, final count:

→ for each of the 90 samples, the 4 reps are within ISTA tolerances

2. Heterogeneity of the 5 samples from each lot

→ Use of the H statistic:

𝐻 =
#_𝑜𝑓_𝑠𝑒𝑒𝑑𝑠_𝑖𝑛_𝑡ℎ𝑒_𝑠𝑎𝑚𝑝𝑙𝑒 × #_𝑜𝑓_𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 1 × 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛 × 100 −𝑚𝑒𝑎𝑛

5400

→ H has a chi-squared distribution

→ Statistical test: p-value that all the sample values are equal

→ The lower the p-value, the greater the statistical evidence for heterogeneity
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Evidence for

heterogeneity

Evidence for

homogeneity

2. 2021 Tomato experiment – Analysis – Sub-samples homogeneity for germination
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2. 2021 Tomato experiment – Analysis – Sub-samples homogeneity for germination

• Homogeneity for the germination final count is reinforced by the R test:
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Assumption: seed lot

is homogeneous

Compute the probability that p
and 𝑝2 are not different using 

ISTA Tolerance Table 5F

High probability for a wide 

range of true lot values 

M
is acceptable

Try a smaller

M

Yes No 

2. Number of sub-lots determination – Overview

Estimate of lot value: 

p from k seeds

Estimate by another

laboratory of the

value for the sub-lot

with true minimum 

value:

𝑝2 from k seeds

M sub-lots 
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Assumption: seed lot is homogeneous

True lot value: 𝜋

Repeated

10,000

times

Determine if p and 𝑝2 are within 

tolerance according to ISTA

Tolerance Table 5F

Estimate of lot value: 

p from k seeds

Test value from another lab

on the sub-lot with

minimum value from a

Beta-binomial distribution: 𝑝2

Minimum of the true M sub-lot

values: 𝜋𝑚 = 𝑚𝑖𝑛 {𝜋𝑖}𝑖=1
𝑀

Compute the 

probability that p is not 

different from 𝑝2 as 
𝑇

10000
where T is the 

number of times p and

𝑝2 are within tolerance 

2. Number of sub-lots determination – Some details

M true sub-lot values 𝜋𝑖 from

multivariate hypergeometric 

distribution *

* Laffont, J-L., Hong, B., Kuo, B-J. and K.M. Remund (2019).

Exact theoretical distributions around the replicate results

of a germination test. Seed Science Research 29, 64-72.
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Sub-lot

1

Sub-lot

2

Sub-lot

3

Sub-lot

4

Random assignment

of the seeds into

M = 4 sub-lots

(n = 400,000 seeds

per sub-lot)

Distribution of the number

of seeds to germinate

in the sub-lots:

multivariate hypergeometric

distribution

Seed lot: N seeds with

G = Np seeds to germinate

N = 1,600,000

p = 90%

G = 1,440,000 

# of seeds to

germinate in

each sub-lot

360,023  360,007  359,968   360,002

…

359,270  312,987  368,976   398,767

360,030  292,345  387,969   399,656

2. Number of sub-lots determination – Some details
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The larger the number

of sub-lots M,

the lower the

minimum values 𝜋𝑚

𝜋𝑚

Sub-lots weight/Number of sub-lots (𝑀 =
𝐿𝑜𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

𝑆𝑢𝑏−𝑙𝑜𝑡 𝑤𝑒𝑖𝑔ℎ𝑡
)

Lot weight = 50 kg

2. Number of sub-lots determination – Some details
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The lower the lot weight,

the lower the

minimum values 𝜋𝑚

𝜋𝑚

Lot weight

Number of sub-lots = 20

2. Number of sub-lots determination – Some details
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Refresher:

• The result from a different lab is not from a Binomial(k, 𝜋𝑚)

but from a distribution with a variance larger than the binomial variance

• The over-dispersion has been quantified by Miles (1963) and is taken

into account in tolerance tables for comparing different laboratories

𝑂𝑣𝑒𝑟_𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
= 𝑓 = 2.38 − 0.8321𝜋𝑚

A model for generating over-dispersed binomial data is the Beta-binomial model 

with parameters k, 𝛼 and 𝛽:

𝛼 = 𝜋𝑚
𝑘 − 1

𝑓2 − 1
− 1 𝛽 = 𝛼

1

𝜋𝑚
− 1

2. Number of sub-lots determination – Some details
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Generated from binomial distribution with 

parameters k and 𝜋

Estimate of lot value: 

p from k seeds

Determine if p and 𝑝2 are within 

tolerance according to ISTA

Tolerance Table 5F

p and 𝑝2 are independent

2. Number of sub-lots determination – Some details
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30

• For two extreme lot sizes (1.5 kg and 50 kg) and different number of sub-lots 

(15, 50 and 500), all the probabilities are very high (above 0.98) 

• Evidence that given that the original lot is homogeneous, there is no limit in 

the number of sub-lots that can be elaborated from it

2. Number of sub-lots determination – Results



3. Group testing: number of groups to ensure

that estimation is possible
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• Suppose people are tested for a disease

• Problem: can be expensive

• Who has the disease?         identification

What is the prevalence of the disease?         estimation

(i.e. what is the proportion of people with the disease?)

• Group testing: cost savings

• One solution: individual testing

+ or - + or - + or -+ or - + or -

… …
Identification: population

Estimation:     sample

Analysis performed on 

blood samples

3. What is group testing
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• Identification: if the group is positive, the individuals 

making up the group are retested to determine which of 

the members have the disease.

• Estimation: ො𝑝

• Group testing:

+ or - + or - + or -…

Analysis performed on 

mixed blood samples

3. What is group testing
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• Identification: original development of group testing by 

Robert Dorfman in 1943:

…

…

3. What is group testing
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• p : proportion of individuals in the population with the attribute

• n : number of groups

• m : number of individuals per group

• x : number of positive groups out of m

ො𝑝 = 1 − 1 −
𝑥

𝑛

1
𝑚

When all the groups are positive, Ƹ𝑝 = 1 and the result is not considered.

3. Group testing estimation
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𝜆 : false negative (group tests neg when at least 1 individual is pos) rate = 1 – sensitivity

𝛿 : false positive  (group tests pos when all individuals are neg)        rate = 1 – specificity

• Taking into account assay errors:

ො𝑝 = 1 − 1 −

𝑥
𝑛
− 𝛿

1 − 𝜆 − 𝛿

Τ1 𝑚

with x being the number of groups out of n testing positive

See:

3. Group testing estimation
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Seed lot

10 groups of 150 seeds are taken from the lot using 

an appropriate sampling procedure (e.g. ISTA)

Seeds are ground into flour

Positive 

control

Negative 

control

4 groups 

are positive

6 groups 

are negative

Each sample is

tested for

presence/absence

of GM seeds

3. Group testing estimation example
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4 groups of 

150 seeds 

are positive

6 groups of 

150 seeds 

are negative

Point estimate

of p, the true

proportion of

GM seeds in 

the lot

ො𝑝 = 1 − 1 −
4

10

1
150

= 0.34%

3. Group testing estimation example
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3. 2023 project around group testing

When all the groups are positive,

estimation is not possible!

The probability that all groups are positive could

help to ensure that the testing plan (n, m) will

ensure estimation of p
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3. 2023 project around group testing

Probability that all groups are positive: 2 cases

1. Infinite population size (e.g. seed lot)

2. Finite population size (e.g. sample distributed for

a Proficiency Test)
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3. 2023 project around group testing

1. Infinite population size: easy
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3. 2023 project around group testing

2. Finite population size: less easy



3. 2023 project around group testing
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An Excel calculator has been developed with an implementation of these 

computations as well as the computation of the expected number of positive 

groups:
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4. Opportunities
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Revisiting group testing estimator properties: Var Ƹ𝑝 = E Ƹ𝑝 − E Ƹ𝑝 2 ,

Bias Ƹ𝑝 = E Ƹ𝑝 − 𝑝 ,

MSE Ƹ𝑝 = E Ƹ𝑝 − 𝑝 2
Bias ො𝑝 = ෍

𝑥=0

𝑛−1

1 − 1 −
𝑥

𝑛

Τ1 𝑚 𝑛
𝑥

1 − 1 − 𝑝 𝑚 𝑥 1 − 𝑝 )𝑚(𝑛−𝑥

1 − 1 − 1 − 𝑝 𝑚 𝑛
− 𝑝

New insights for number of groups and group sizes recommendations 

4. Group testing estimator
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4. Group testing estimator

Estimator of the proportion of the number of white balls from the

observed number of empty bins for the hypergeometric group testing

problem

Needs to solve the equation for 𝑛1 :

𝑑 = 𝑘 1 −

𝑚(𝑘 − 1)
𝑛1
𝑘𝑚
𝑛1

where d is the observed number of positive bins.
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4. Sampling

These numbers have 

been elaborated over the 

years, using the results 

from sampling 

experiments and results 

from simulation studies.

Can we fine-tune these numbers using sampling theory?
(e.g. taking into account the size of the primary samples?)

Use of theoretical results on two-stage sampling?
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4. And…

• dPCR modeling

• Method validation:

• Revising ISTAgermMV R package

• Reviewing needs in terms of number of labs,

number of lots,…

• …
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4. Suggestions ?



Fo l l o w  u s  o n  s o c i a l  m e d i a :

Thank you!


